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Summary

Motivated by molecular data on female premutation carriers of the fragile X mental
retardation 1 (FMR1) gene, we present a new method of covariate adjusted correlation
analysis to examine the association of messenger RNA (mRNA) and number of CGG
repeat expansion in the FMR1 gene. The association between the molecular variables in
female carriers needs to adjust for activation ratio (ActRatio), a measure which accounts
for the protective effects of one normal X chromosome in females carriers. However, there
are inherent uncertainties in the exact effects of ActRatio on the molecular measures of
interest. In order to account for these uncertainties, we develop a flexible adjustment
that accommodates both additive and multiplicative effects of ActRatio nonparametri-
cally. The proposed adjusted correlation uses local conditional correlations, which are
local method of moments estimators, to estimate the Pearson correlation between two
variables adjusted for a third observable covariate. The local method of moments estima-
tors are averaged to arrive at the final covariate adjusted correlation estimator, which is
shown to be consistent. We also develop a test to check the nonparametric joint additive
and multiplicative adjustment form. Simulation studies illustrate the efficacy of the pro-
posed method. Application to FMR1 premutation data on 165 female carriers indicates
that the association between mRNA and CGG repeat after adjusting for ActRatio is
stronger. Finally, the results provide independent support for a specific jointly additive
and multiplicative adjustment form for ActRatio previously proposed in the literature.

Key words: Conditional correlation; Fragile X syndrome; Local method of moments;
Mental retardation; Nonparametric partial correlation; Pearson correlation; Semipara-
metric modeling.



1 Introduction

Fragile X syndrome (FXS) is the most common inherited form of X-linked intellectual dis-

ability, with cognitive and behavioral impairments associated with distinct physical features.

FXS results from a hyperexpansion of a CGG trinucleotide repeat in the promoter region of

the fragile X mental retardation 1 (FMR1) X-linked gene (Verkerk et al., 1991; Oberle et

al., 1991). When the number of CGG repeats exceeds 200 (full mutation) methylation and

transcriptional silencing of the gene occur (Pieretti et al., 1991) with consequent absence or de-

ficiency of the FMR1 protein (FMRP; Devys et al., 1993). Individuals with smaller expansions

in the premutation range of 55 to 200 CGG repeats are called premutation carriers. Many pre-

mutation carriers have some physical and behavioral characteristics of FXS (Hagerman, 2002)

while a subgroup of older adult carriers develops fragile X-associated tremor/ataxia syndrome

(FXTAS) later in their lives (Jacquemont et al., 2004) and about 20% develop premature

ovarian failure. For a review, see Hagerman and Hagerman (2004). However, molecular mech-

anisms/models for the myriad of clinical involvements associated with premutation carriers, a

current area of active research, are distinct from the molecular model that characterizes FXS.

More precisely, unlike full mutation, premutation alleles do not lead to transcriptional silencing

of FMR1. Indeed, it has been shown that premutation male carriers have significantly elevated

levels of FMR1 mRNA compared to normal controls (Tassone et al., 2000a, b; Kenneson et

al., 2001) and mRNA levels are positively correlated with the number of CGG repeats.

For female premutation carriers, the underlying association/correlation between CGG re-

peat size and mRNA level is more complex. The analysis of this correlation needs to take into

account (or adjust for) the protective effects from one normal X chromosome. This protective

effect is quantified by the activation ratio (ActRatio), which measures the proportion of normal

active X chromosomes. Although it is difficult to precisely account for the effect of ActRatio

on observed mRNA level, Tassone et al. (2000a) proposed to examine the relationship between
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CGG repeat size and mRNA level, after adjusting for ActRatio, based on the adjustment

X̃ = (1 − U)X + aU, (1)

where X̃ is the observed mRNA level, X is the unobserved (adjusted) mRNA level due to the

carrier chromosome, U is the ActRatio, and a is the fixed mean level of mRNA in normal alle-

les. The parametric adjustment in (1) is a simple decomposition of the observed mRNA level

into two parts, one from the normal allele and the other from the diseased allele. Although

this simple decomposition serves as a simple and biologically sensible adjustment, it does not

account for the inherent uncertainties in the precise effect of ActRatio on mRNA expression

level (Tassone et al., 2000a). Hence, we propose a more general, fully nonparametric adjust-

ment that incorporates both additive and multiplicative effects of U , as in (1). More precisely,

we consider the following adjustment, of which the previous adjustment (1) is a special case,

X̃ = φ1(U)X + φ2(U), (2)

where φ1(·) and φ2(·) are unknown smooth functions of U . Similarly, the potential effect of U

on the variability in CGG repeats is modeled as

Ỹ = ψ1(U)Y + ψ2(U), (3)

where ψ1(·) and ψ2(·) are also allowed to be general unknown smooth functions to accommodate

uncertainties in the effects of U , Ỹ is the observed CGG repeat size and Y is its U -adjusted

form. In (2)-(3), the unobserved variables (X,Y ) are defined to be the parts of (X̃, Ỹ ) that

are independent of U . Our aim is estimation of the correlation between X and Y , denoted

ρXY , adjusted for the general effects of U based on the observed data {X̃, Ỹ , U}.

The adjustments that we consider in (2)-(3) are flexible to accommodate linear effects of U ,

as in (1), or nonlinear effects. In addition, the effects of U may be additive, multiplicative or

a combination of both. The trivial case where U has no effect is accommodated with φ1(·) =
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ψ1(·) = 1 and φ2(·) = ψ2(·) = 0. Also, since there are no assumptions made on the unknown

functions in (2)-(3), other than smoothness, an important property of the proposed estimator

for ρXY is its invariance under linear transformations, similar to the Pearson correlation. Thus,

the proposed covariate adjusted correlation is unaffected by the scale of the measurements.

We note that the adjustments (2)-(3) are partly related to the work of Şentürk and Müller

(2005b). They proposed an estimator for ρXY (a) under the special case when X̃ = Xφ(U) and

Ỹ = Y ψ(U) and (b) that requires identifiability conditions of E{φ(U)} = 1 and E{ψ(U)} = 1

and the assumptions that E(Ỹ ) 6= 0 and E(X̃) 6= 0 for estimation. These identifiability condi-

tions and assumptions are difficult to verify in practice generally, and they are not satisfied for

the FMR1 data adjustment described above. In the current work, we propose the more general

adjustments (2)-(3) that account for the X-linked nature of disease and develop a completely

different estimator for ρXY that does not require the above assumptions and identifiability

conditions. A key observation in the development of the proposed estimator is that the (local)

conditional correlation Corr(X̃, Ỹ |U = u) is equal to ρXY under (2)-(3), when φ1(·) and ψ1(·)

are of the same sign. This condition is satisfied when both φ1(·) and ψ1(·) are positive. This

means the observed measurements are positively correlated with what we want to measure,

i.e. the correlation between X and X̃ and between Y and Ỹ are positive. Based on the above

observation that Corr(X̃, Ỹ |U = u) = ρXY under (2)-(3), the data is stratified with respect

to U , where the levels of U will be approximately constant in each stratum. We then average

the local method of moments estimators of ρXY , obtained in each strata, to arrive at our final

covariate adjusted correlation estimator.

Although the proposed adjustment formulation (2)-(3) is motivated from the problem of

assessing the association between molecular measures, adjusted for ActRatio in female pre-

mutation carrier data, it is sufficiently general for a variety of other applications. Thus, the

proposed adjusted estimator and the associated theory should be of broader interest beyond
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the motivating area of application. For instance, examples of covariate adjustments (2)-(3)

include normalization of albumin turnover and protein catabolic rate (Kaysen et al., 2002),

through division by U , body surface area. Such a normalization of the observed variables is

common in biomedical studies, and can be viewed as a special case of the adjustments (2)-(3)

with φ2(·) = ψ2(·) = 0 and φ1(·) = ψ1(·) = U . A similar adjustment in environmental health

is described in Schisterman et al. (2005), where the exposure level of polychlorinated biphenyl

(PCB), a lipophilic compound, is adjusted through division by a function of serum lipid levels

(U).

We also note that although the additive effects of a covariate can be adjusted for with

standard approaches, such as partial correlation or nonparametric partial correlation, these

methods cannot adjust for multiplicative (possibly nonlinear) effects. A limitation of the partial

correlation is that it adjusts for only additive linear effects of a covariate. More specifically, it

can be shown that the standard partial correlation between X̃ and Ỹ adjusted for a covariate

U targets ρXY , when X̃ = X + a1U + a2 and Ỹ = Y + b1U + b2. These standard methods no

longer target ρXY under the more general adjustments (2)-(3). We elaborate on the special

cases of the additive effects of U in Section 2 and the Appendix section.

The remainder of the article is organized as follows. We detail the proposed covariate

adjusted estimator of ρXY in Section 2. The asymptotic result is also given in Section 2, where

the proof is deferred to the Appendix section. In Section 3, we propose a bootstrap test to check

the proposed dual additive and multiplicative adjustment structure of (2)-(3). The proposed

method is further examined with simulation studies and illustrated with an application to the

aforementioned data on female FMR1 premutation carriers in sections 4 and 5, respectively.
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2 Estimation

Estimation of ρXY is based on the observed data of size n, {(Ui, X̃i, Ỹi)}n
i=1, where X̃i =

Xiφ1(Ui) + φ2(Ui), Ỹi = Yiψ1(Ui) + ψ2(Ui) and the unobserved variables (X,Y ) are defined

to be the parts of X̃ and Ỹ that are independent of U . The proposed estimator of ρXY is

constructed from local method of moments estimates of ρXY . These local estimates utilize

the fact that, under the general adjustments (2)-(3), the correlation between X̃ and Ỹ at a

fixed U is equal to the correlation ρXY . To be more precise, denote ρ̃(u) to be the correlation

between X̃ and Ỹ given U = u, defined by ρ̃(u) ≡ Corr(X̃, Ỹ |U = u) = Cov(X̃, Ỹ |U =

u)/{V ar(X̃|U = u)V ar(Ỹ |U = u)}1/2. Note that by conditioning on U = u, it follows from

the definitions of Ỹ and X̃ and the invariance of ρXY to linear transformations that

ρ̃(u) = ρXY ,

if φ1(u) and ψ1(u) are assumed to be of the same sign. The above relationship implies that

within a neighborhood of u, the correlation between the observed variables X̃ and Ỹ , denoted

ρ eX eY , will target ρXY of interest. The proposed estimator of ρXY , based on this relationship,

is an average of localized method of moments estimates of ρ̃(u).

In order to obtain the targeted local estimates, we bin the observed data with respect to

U . The range of U is divided into m equidistant intervals, referred to as bins and denoted by

B1, . . . , Bm. Let Lj denote the number of subjects falling into bin j, 1 ≤ j ≤ m. To track the

observations that fall into a given bin, bin-specific observations are marked by a prime. For

example, data for subject k in bin j is (U ′
jk, X̃

′
jk, Ỹ

′
jk), for 1 ≤ k ≤ Lj. We define the following

local method of moments estimator of the correlation between X̃ and Ỹ within bin j,

rj =
M eX eY ,j − M eX,jMeY ,j√

M eX2,j − M2
eX,j

√
MeY 2,j − M2

eY ,j

,

where M eX eY ,j = Lj
−1 ∑Lj

k=1 X̃ ′
jkỸ

′
jk, M eX,j = Lj

−1 ∑Lj

k=1 X̃ ′
jk, MeY ,j = Lj

−1 ∑Lj

k=1 Ỹ ′
jk, M eX2,j =

Lj
−1 ∑Lj

k=1 X̃ ′2
jk and MeY 2,j = Lj

−1 ∑Lj

k=1 Ỹ ′2
jk . Guidelines for choosing the total number of bins
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m will be given in the simulation studies of Section 4. Since rj targets ρXY for all j = 1, . . . ,m,

a natural estimator of ρXY can be based on the average of {rj}m
j=1. Therefore, the proposed

covariate adjusted correlation estimator of ρXY is

r =
m∑

j=1

Lj

n
rj, (4)

which is a weighted average of the bin specific estimators. Note that the weights are propor-

tional to the numbers of points in each bin. The covariate adjusted estimator, r, is consistent

for ρXY , as given by the following result. The proof is deferred to the Appendix section.

Theorem 1. Under the technical conditions given in the Appendix,

r = ρXY + Op(cn),

where cn = {n/ log(n)}−1/3.

We emphasize here that the consistency of the covariate adjusted correlation estimator, r,

holds under the general additive and multiplicative adjustments (2)-(3). However, as pointed

out in the Introduction section and proven in the Appendix section, the special case of additive

linear effects of U (i.e. X̃ = X +a1U +a2 and Ỹ = Y +b1U +b2) can be handled with standard

partial correlation analysis. The partial correlation estimate is obtained by first regressing (1)

X̃ on U and (2) Ỹ on U to obtain two sets of residuals. The partial correlation estimate is

then obtained as the Pearson correlation between the two sets of residuals. In contrast to the

additive linear case, the partial correlation does not target ρXY under general additive effects

of U on X and Y , such as nonlinear effects. More specifically, consider X̃ = X + φ(U) and

Ỹ = Y +ψ(U), where φ(·) and ψ(·) are unknown smooth functions of U that may be nonlinear.

Under these general additive effects, it is also shown in the Appendix section that a simple

generalization of the partial correlation, called nonparametric partial correlation, targets ρXY .

The only difference between partial and nonparametric partial correlation is that, for the later,
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the two sets of residuals are obtained from nonparametric regressions of X̃ on U and Ỹ on U .

Both partial and nonparametric partial regression do not target ρXY under the more general

form of (2)-(3), as shown in the Appendix section.

We note that while r is based on an equidistant binning procedure, alternate binning

approaches can be integrated to the estimation procedure proposed above. One alternative

approach that we also explored is based on nearest neighbor binning. As pointed out earlier, for

the equidistant binning used, Bj, j = 1, . . . ,m, are fixed and equidistant; however, the number

of data points, Lj, falling into each bin is random. In nearest neighbor binning, the bin lengths

and boundaries are random, but each bin contains the same number of observations, denoted

by L. This alternate binning utilizes the nearest neighbor idea by first ordering the observed

distortion values Ui, i = 1, . . . , n, and then forming the m = n/L number of bins by grouping

the sets of L nearest neighbor values among the ordered set starting with the first L to the

last. Once the bins are formed, the rest of the procedure is the same as explained for the case

of equidistant binning. We compare the performance of the two binning procedures in more

detail in Section 4.4 with respect to various distributions for U .

Also, upon the suggestion of the editor, we explored a variation on the proposed estimator

in (4) by replacing the rj’s in (4) with their Fisher’s z transformed values (i.e. .5{ln(1 + rj)−

ln(1 − rj)}). Comparison of r with this variation is given in Section 4.5.

For inference, we use the bootstrap percentile method to form confidence intervals based

on the proposed covariate adjusted estimator in the analysis of the female FMR1 premutation

data. The estimated nonparametric density of the standardized 1000 bootstrap estimates

of ρXY is given in Figure 2 (bottom panel), along with the standard normal density curve.

The fitted density appear close to the standard normal density, indicating that the percentile

bootstrap approximation is reasonable. The coverage of the proposed bootstrap percentile

confidence intervals are examined through simulations reported in Section 4.3.
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An important practical issue with the application of the proposed estimator is the ade-

quacy of the assumed adjustment forms (2)-(3). Although these assumed dual additive and

multiplicative adjustment forms are fairly general compared to the additive linear restriction

of other methods like partial correlation, it is still of interest to check the adequacy of these

forms. We address this issue next by developing a bootstrap test to check this assumption.

3 Assessing the Adjustment Model Assumption

The dual additive and multiplicative adjustment form of (2)-(3) imply that the local correlation

ρ̃(u) = ρXY is free of u. Hence, under the null hypothesis, H0 : Ỹ = ψ1(U)Y + ψ2(U) and

X̃ = φ1(U)X + φ2(U), the scatter plot of the local correlation estimates should be randomly

scattered around the constant ρXY . Even though this scatter plot, augmented with a scatter

plot smoother, can provide an initial graphical check of the above assumption, we also develop

a more formal assessment through a hypothesis testing procedure. The proposed test will be

based on the local correlation estimates {rj}m
j=1 coming from each bin. Let {UM

j }m
j=1 denote the

corresponding midpoints of the bins. Then a smooth fit to the scatter plot of {(UM
j , rj)}m

j=1 is

expected to be a constant function under H0. We consider a smooth test as they are expected

to be more powerful (Hart, 1997, p. 140). Reasonable test statistics quantify departures of

the smooth estimator from a horizontal line at the sample mean of {rj}. Alternatively, one

can quantify the departures (from the horizontal line at zero) of the smooth estimator fitted to

the centered scatter plot, {(UM
j , rC

j )}m
j=1, where rC

j = rj −m−1
∑m

j rj. Similar to the statistics

proposed by Hart (1997) and Şentürk and Müller (2005a), we adopt as a measure of departure,

Rn =
1

m

m∑

`=1

|ρ̂(UM
` ; hT )|,

where ρ̂(UM
` ; hT ) =

∑m
j=1 rC

j wj(U
M
` , hT ) is the linear smooth fitted to the centered scatter plot

using the bandwidth hT and weights wj(U
M
` , hT ), evaluated at UM

` .

An automatic data-based choice of the bandwidth parameter hT that is fast to implement
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and that leads to good results, adopted from Rice (1984), is

hT = arg min
h

{T (h)} = arg min
h

{
(1/m)RSS(h)

1 − 2tr(Wh)/m

}
, (5)

where Wh is an m × m matrix with (`, j)th element wj(U
M
` ; h), RSS(h) = ‖r′ − ρ̂‖2 for

r′ = (r1, . . . , rm)T, and ρ̂ = {ρ̂(UM
1 , h), . . . , ρ̂(UM

m , h)}T.

We approximate the sampling distribution of Rn by the wild bootstrap, since the local

estimators rj are heteroscedastic with their variance dependent on U . The bootstrap samples

have the form {(UM
1 , rC

1 V1), . . . , (U
M
m , rC

mVm)}, where Vj is sampled from the two-point distri-

bution attaching masses (
√

5 + 1)/2
√

5 and (
√

5 − 1)/2
√

5 to the points −(
√

5 − 1)/2 and

(
√

5 + 1)/2 (Davison and Hinkley, 1997, p. 272). The variables {rC
j Vj} have mean zero and

crudely approximate the variance and skewness of the underlying distribution, since (Vj)
m
j=1 are

independent and identically distributed random variables with mean zero and with variance

and third moment equal to one. Properties of this test are studied in Section 4.3.

4 Simulation Studies

In this section we summarize the simulation studies conducted to examine (1) the finite-

sample performance of the proposed covariate adjusted correlation estimator and its relative

performance in comparison to no adjustment, parametric adjustment of Tassone et al. (2000a),

partial correlation and nonparametric partial correlation, (2) the sensitivity of the proposed

estimator to the choice of the number of bins m, (3) the power of the proposed bootstrap

test for checking the dual additive and multiplicative adjustment forms and the coverage of

the proposed bootstrap percentile confidence interval, (4) the performance of the two binning

procedures (equidistant and nearest neighbor) and their robustness to the distribution of U

and (5) the performance of the alternative estimator proposed via Fisher’s z transformations.
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4.1 Finite Sample Performance and Comparison to Other Adjustments

The simulation set-up was designed to reflect the observed FMR1 premutation data, where

the means and variation of (X̃, Ỹ , U) are chosen to be similar to those of (m̃RNA, C̃GG,

ActRatio). Also, the correlation ρ eX,eY = 0.32 was chosen to approximately match the observed

correlation r
m̃RNA,C̃GG

= 0.29. The covariate U is simulated from Uniform[0.2, 0.9]. The under-

lying unobserved variables (X,Y )T are obtained from the bivariate normal distribution with

mean vector (5.5, 7.5)T, σ2
X = 1.5, σ2

Y = 1.1 and ρXY = 0.6. The functional effects of U are

given by ψ1(U) = (U + 4)2/2, ψ2(U) = 25(1 − U), φ1(U) = U3 and φ2(U) = 2(1 − U2). The

observed data is obtained as X̃ = Xφ1(U) + φ2(U) and Ỹ = Y ψ1(U) + ψ2(U). The simulation

studies were carried out for sample sizes of n = 150, 300 and 600. The proposed covariate

adjusted correlation estimator is compared to estimators from no adjustment (r eX eY ), the para-

metric adjustment (1) of Tassone et al. (2000a), partial correlation and nonparametric partial

correlation under three distortion settings: (a) nonparametric additive and multiplicative dis-

tortion effects, (b) parametric additive and multiplicative distortion as given in equation (1)

and (c) parametric additive distortion.

The first distortion considered is (a) the general case of nonparametric additive and multi-

plicative effects under which only the proposed covariate adjusted estimator targets the under-

lying correlation coefficient. Table 2 reports the estimated absolute bias, variance and MSE

of the correlation estimators based on 1000 Monte Carlo data sets for each sample size. As

evident from the results in Table 2, only the bias of the proposed covariate adjusted correlation

decreases with increasing sample size. As expected, the biases of the other methods remain

substantial across the different sample sizes, since they do not target ρXY .

In the second distortion set-up (b) of parametric additive and multiplicative distortion

(Ỹ = Y , X̃ = (1 − U)X + 1.42U), the parametric adjustment (1) of Tassone et al. and

the proposed covariate-adjusted estimator are the two methods that target the underlying
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correlation. For the third set-up (c) of parametric additive distortion (Ỹ = Y + 5U , X̃ =

X + 10U), partial correlation, nonparametric partial correlation and the proposed method

target the correct correlation. The results for (b) and (c) are reported in Tables 3 and 4,

respectively. As can be seen from Table 3, both partial and nonparametric partial correlation

perform (equally) poorly and their biases do not decrease with increasing sample size, as

expected for model (b). For parametric additive distortion, namely case (c), the incorrect form

of adjustment (1) due to Tassone et al. and the unadjusted correlation result in biases that do

not decrease with increasing sample size (Table 4). The biases of parametric, nonparametric

partial correlation and the proposed covariate-adjusted correlation decrease with increasing

n. The simpler methods of parametric and partial correlation are more efficient than the

proposed method under the null models (b), (c) for the small sample size of n = 150, as

expected. However, this difference seems to diminish quickly as the sample size increases to

n = 300 and 600.

4.2 Choice of m

In the simulation studies we also examine the effect of the total number of bins, m, on the

proposed estimators. Similar to the results of Şentürk and Müller (2005b), where the corre-

sponding estimator was also obtained through binning, the estimates are found to be robust

to the choice of m. The results indicate that the correlation estimates and MSEs were very

similar for m between 15-30 for n = 150, m between 20-40 for n = 300 and m between 25-

50 for n = 600. For example, under simulation set-up (a) of Section 4.1, for n = 300 with

m ∈ {20, 30, 40} the mean of covariate adjusted correlation estimates for ρXY = 0.467 were

(0.449, 0.447, 0.439) and the MSEs were (0.0027, 0.0030, 0.0034), respectively. Although our

experience with the proposed estimator indicates that the final estimate is fairly robust to a

reasonably wide range of m in practice, for any given application it is prudent to consider an

analysis of sensitivity to m, as was done for the FMR1 data application above.
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4.3 Power of the Proposed Bootstrap Test and Coverage of the Proposed Boot-

strap Confidence Interval

Next, to examine the power of the proposed bootstrap test for checking the dual additive and

multiplicative form of (2)-(3), we considered two cases of deviations (alternatives) from this

assumption (null case). The simulation model (a) of Section 4.1 described above are used for

the null case. In the first alternative case, Ỹ and X̃ deviate from the additive and multiplicative

forms (2)-(3) through:

X̃ = N0 − N0I{θ>0} + cos{X(0.4 + θ/130)(U/1.3 + 3.2)}I{θ>0}

Ỹ = M0 − M0I{θ>0} + cos{Y (0.4 + θ/130)(U/1.3 + 3.2)}I{θ>0},

where N0 ≡ φ1(U)X + φ2(U), M0 ≡ ψ1(U)Y + ψ2(U), I{E} is the indicator function for event

E, and θ = 0, 1, . . . , 8. The functions φ1(U), φ2(U), ψ1(U) and ψ2(U) are as defined above.

The null hypothesis (i.e. assumption (2)-(3) holds) corresponds to θ = 0 and θ = 1, . . . , 8

correspond to increasing alternatives. These alternatives as well as the null are displayed in

Figure 3 (top left plot) where the conditional correlation functions, ρ̃(u), are provided. When

the additive and multiplicative forms are satisfied (θ = 0), ρ̃(u) is constant (see Section 3). The

second set of alternatives/violations explored in this simulation study are provided graphically

in the top right plot of Figure 3. These conditional correlation functions correspond to the

following alternative deviations:

X̃ = N0 − N0I{θ>0} + cos{X(0.38 + θ/130)(2U − 1.1)}I{θ>0},

Ỹ = M0 − M0I{θ>0} + cos{Y (0.38 + θ/130)(2U − 1.1)}I{θ>0},

for θ = 0, . . . , 8. Similarly, the null hypothesis corresponds to the case of θ = 0.

Given in the lower panel of Figure 3 are the power of the bootstrap test proposed in Section

3 to check the adequacy of the dual additive and multiplicative forms. Displayed are three sets

of power curves corresponding to sample sizes n = 150, 300 and 600. Two curves of the same
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line type are for the test at significance levels 0.05 (bottom curve) and 0.10 (top curve). Power

estimates are based on 1000 Monte Carlo runs. The observed type I errors at θ = 0, for the

above significance levels are, (0.015, 0.025) for n = 150, and (0.04, 0.08) for n = 600 in the first

alternative deviation case. For the second alternative deviation case, the observed levels are

(0.01, 0.04) for n = 150 and (0.04, 0.09) for n = 600. As expected, the levels of the bootstrap

test move closer to the target values and the power functions increase with increasing deviation

away from the null case of θ = 0 and with increasing sample size.

We also examined the estimated coverage levels of the proposed bootstrap percentile confi-

dence intervals under the simulation setting (a) of Section 4.1. Briefly, one thousand data sets

were simulated at two sample sizes of n = 165 and n = 300. For each data set, 1000 bootstrap

samples were generated and the estimated coverage values of the CIs corresponding to levels

of (0.80, 0.90 and 0.95) are (0.75, 0.88, 0.93) for n = 165 and (0.80, 0.89, 0.95) for n = 300.

4.4 Alternate Binning Procedure and Robustness to the Distribution of U

We also ran a simulation study to compare the proposed equidistant binning estimator to one

obtained via nearest neighbor binning and to evaluate the performance of the two binning

procedures under different U distributions. While the bin size is kept constant in equidistant

binning, the number of points per bin is kept constant in nearest neighbor binning. (See Section

2.) We compare the two binning procedures for three different distributions of U . Under

model (a) of Section 4.1 where U was sampled from Uniform[0.2, 0.9] uniform distribution, we

additionally consider cases where U is sampled from N (0.55, 0.04) and χ2(1)/6+0.4. The three

distributions are chosen such that they have approximately the same first two moments. The

results are summarized in Table 5. The results suggest that the proposed equidistant binning

is quite robust to the distribution of U and the nearest neighbor binning do not improve on

the proposed equidistant binning.
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4.5 Comparison to Estimators via Fisher’s z Transformation

We implemented the variation of the proposed estimator by replacing rj by its the Fisher-z

values, and compared its performance to that of r under the simulation set-up of Section 4.4

in terms of bias, variance and MSE. We compared their performance under U distributed as

uniform, normal and χ2 as described earlier. Even though neither estimation approach was

superior to the other in all aspects, we believe the simulation results reported in Table 6 are of

interest. While the performance of the estimators are quite similar for uniformly distributed

U , the estimator averaging Fisher-z values improves on the bias of the proposed estimator

for U distributed as normal and χ2. However, the original proposed estimator yields smaller

variance, especially for small sample sizes (n = 150 and 300); thus original estimator results

in smaller MSE for the smaller sample size. Their MSE estimates are similar for larger n (300

and 600) in the simulation study, as expected.

5 Application to Female FMR1 Premutation Data

The molecular measurements, C̃GG, m̃RNA and activation ratio U ≡ ActRatio, were obtained

from experiments at the University of California at Davis on 165 female premutation carriers.

Our main interest here is to target ρXY ≡ ρmRNA,CGG, the activation ratio-adjusted correlation

between the mRNA level and CGG repeat size. Figure 1 gives the matrix plot for the observed

variables [C̃GG, m̃RNA, ActRatio], where C̃GG, m̃RNA and ActRatio range between (57, 138)

repeats, (0.78, 6.3) and (0.19, 0.91), respectively. Figure 1 suggests a potential ActRatio effect

on both C̃GG and m̃RNA.

Prior to estimating ρmRNA,CGG, we assess the adequacy of the assumed dual additive and

multiplicative forms (2)-(3) for the data, as described in Section 3. The local correlation esti-

mators from each bin are given in Figure 2 (top panel), along with a local linear smooth using

the automatic bandwidth choice of h = 0.1 determined by (5). A p-value of 0.56 was obtained
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from 1000 bootstrap replications of Rn. Thus, the adequacy of the assumed adjustment forms

(2)-(3) is not rejected. Graphically, this can also be seen from Figure 2 where the linear smooth

fitted to the scatter plot of the local correlations is approximately close to a constant function.

In our analysis, we compare the proposed covariate (ActRatio) adjusted estimate for the

correlation, ρmRNA,CGG, to estimates obtained without adjustment and with adjustment (1) on

m̃RNA, previously proposed by Tassone et al. (2002a), partial correlation and nonparametric

partial correlation. The estimate without adjustment corresponds to the observed Pearson

correlation between m̃RNA and C̃GG (X̃ and Ỹ ). The proposed estimate is obtained using a

total of 20 bins. We note here that the covariate adjusted correlation estimate was quite robust

to the choice of the number of bins. For example, the estimates were very similar for the num-

ber of bins from m = 17 to m = 25. The estimates and approximate 95% confidence intervals

(CIs) for ρXY from these five methods are provided in Table 1. For the unadjusted Pearson

correlation, the assumed adjustment (1), partial correlation and nonparametric partial corre-

lation approximate confidence intervals (CIs) can be obtained using Fisher’s z-transformation.

The CI for the proposed covariate adjusted estimator in (4) was obtained using the percentile

bootstrap method with 1000 bootstrap replications.

The correlation between the observed mRNA levels and the CGG in female premutation

carriers, unadjusted for the effect of activation ratio, is 0.29 (95% CI: 0.15 − 0.43, Table 1).

Although still significant, the correlation estimate for female carriers falls substantially below

the corresponding estimate for male carriers (correlation ≈ 0.57), which has been established in

literature. As described in the Introduction section, this weaker association in female carriers

is attributed partly to the protective effects from one normal X chromosome in female carriers

which is absent in male carriers. Applying the (parametric) adjustment (1) of Tassone et al.

(2000a), specifically m̃RNA = (1−ActRatio)mRNA+aActRatio, to account for activation ratio

results in a stronger (adjusted) correlation point estimate of 0.34. We used the constant a =
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1.42, which is the empirical mean mRNA level for normal/unaffected individuals from Tassone

et al. (2000b). The proposed covariate adjusted correlation under the general adjustment forms

(2)-(3), allowing for nonparametric effects of ActRatio on both observed mRNA and CGG,

results in an adjusted correlation point estimate of 0.37 (95% CI: 0.25 − 0.51). Although the

proposed method suggests that the underlying correlation is slightly higher, this result is quite

similar to the result using the parametric additive and multiplicative adjustment (1) proposed

by Tassone et al. (2000a). Hence, this application provides an independent empirical support

for the previously proposed parametric joint additive and multiplicative effect of ActRatio on

mRNA, derived mainly from biological motivations. Also, since the nonparametric partial

correlation (0.367, 95% CI: (0.228, 0.491)) is close to the proposed adjusted correlation estimate

(0.372, 95% CI: (0.252, 0.520)), informally, it is interpreted that the nonlinearity is due to the

additive distortion part.

6 Concluding Remarks

Motivated by an adjustment for activation ratio in fragile X premutation female carriers,

we proposed a general dual additive and multiplicative correlation adjustment model for the

correlation between mRNA and CGG repeat expansion. A key feature of the methodology is

that the uncertainty in the precise effects of activation ratio at the molecular level is modeled

nonparametrically, thus, accommodating linear or nonlinear effects. We proposed a simple

covariate adjusted correlation estimator that is easy to obtain, showed that it is consistent,

and examined its numerical properties in simulation studies. Although the adjustment forms

are fairly general and, therefore, are automatically adaptive to special cases like linear additive

or nonlinear additive effects, we also developed and assessed the performance of a bootstrap

test procedure to check the adequacy of the dual additive and multiplicative forms. A test for

detecting whether the distortion setting at hand would reduce to parametric or only additive
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cases would also be of interest, since then a simpler adjustment method can be employed.

Nevertheless this remains an open problem requiring further research.

Application of the proposed covariate adjusted correlation to n = 165 fragile X premutation

female carriers indicates stronger association between FMR1 mRNA level and CGG repeat

expansion compared to unadjusted analysis. Our results provide new insights and additional

support for a dual additive and multiplicative parametric adjustment previously proposed

in the fragile X premutation literature. The proposed adjustment is also applicable to the

multiplicative adjustments (normalizations) used in biomedical research, including adjustments

of biomarkers of inflammation by body mass index or body surface area and individual levels

of PCB exposure by individual serum lipids.

Extension of the proposed algorithm to accommodate multiple covariates poses challenges.

While the adjustment for two covariates (U = (U1, U2)) would be a straight forward extension

of the proposed algorithm using a two dimensional binning procedure, as the dimension of U

increases, one would quickly run into the curse of dimensionality. Since the proposed procedure

involves localizing with respect to U, when the dimension of U increases, the data needed for

the localization (binning) would become highly sparse. In these cases, a dimension reduction

approach, such as taking a linear combination of the components of U vector may be of interest.
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Appendix

Proof of Consistency

We first state the technical conditions that will be used in the proof of consistency. They

are: C1. The adjusting variable U is independent of the variables X and Y . In addition,

the marginal density f(U) of U has compact support, i.e. a ≤ U ≤ b for some constants

a , b, and satisfies infa≤u≤b f(u) > 0, supa≤u≤b f(u) < ∞. The marginal density is also

uniformly Lipschitz. C2. The functions φ1(·), φ2(·), ψ1(·) and ψ2(·) have continuous derivatives.

Furthermore, φ1(·) and ψ1(·) are of the same sign. C3. The two variables X and Y satisfy

the following moment conditions, E|X|2λ < ∞ and E|Y |2λ < ∞ for some λ ≥ 3. C4. The

function h(u) =
∫

xg(x, u)dx is uniformly Lipschitz, where g(·, ·) is the joint density function

of X̃ and U and of Ỹ and U . C5. The number of bins m is of order {n/ log(n)}1/3.
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Considering the definition of the Nadaraya-Watson estimator (Fan and Gijbels, 1996), we

note that all the five terms in rj are Nadaraya-Watson estimators. For instance, consider M eX,j.

It has the form M eX,j = Lj
−1 ∑Lj

k=1 X̃ ′
jk = {∑n

i=1 K((Ui−UM
j )/h)X̃i}/

∑n
i=1 K((Ui−UM

j )/h) ≡

N̂(UM
j ), which is a Nadaraya-Watson estimator with K(·) = (1/2)1[−1,1], h = (b − a)/m, and

UM
j is the midpoint of the jth bin, as defined in Section 3. Uniform consistency of Nadaraya-

Watson estimators with kernels of compact support has been shown in Härdle et al. (1988),

sup
a≤u≤b

|N̂(u) − N(u)| = Op(cn), (6)

where N(u) = E(X̃|U = u) and cn = {n/ log(n)}−1/3. Then (6) implies supj |N̂(UM
j ) −

N(UM
j )| = Op(cn). Similar to the uniform consistency of M eX,j, it follows that MeY ,j, M eX2,j,

MeY 2,j and M eX eY ,j are all uniformly consistent over j. Hence the following holds uniformly in j

rj =
E(X̃Ỹ |U = UM

j ) − E(X̃|U = UM
j )E(Ỹ |U = UM

j )
√

E(X̃2|U = UM
j ) − {E(X̃|U = UM

j )}2

√
E(Ỹ 2|U = UM

j ) − {E(Ỹ |U = UM
j )}2

+ op(cn)

= Corr(X̃, Ỹ |U = UM
j ) + op(cn) = ρXY + op(cn).

Hence, Theorem 1 follows.

Remark: The consistency of r also follows under weaker moment conditions than the ones

given in C3, where 2 < λ < 3. For the order of m and the convergence rates under weaker

moment conditions, see Härdle et al. (1988) for details.

Target of partial correlation

The partial correlation between Ỹ and X̃ adjusted for U is equivalent to the correlation

between the variables eeY U and e eXU , denoted ρeeY U
e eXU

, where eeY U and e eXU are the errors

from the regression models Ỹ = a0 + a1U + eeY U and X̃ = b0 + b1U + e eXU , respectively.

Using the population normal equations for regression, under adjustments (2)-(3), we have

a1 = cov{U, Ỹ }/var(U) = [cov{U, ψ2(U)} + cov{U, ψ1(U)Y }]/var(U), a0 = E(Ỹ ) − a1E(U),

b1 = cov{U, X̃}/var(U) = [cov{U, φ2(U)}+cov{U, φ1(U)X}]/var(U), and b0 = E(X̃)−b1E(U).
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Thus, plugging in definitions of a0 and b0, we have eeY U = Ỹ −a0−a1U = [ψ2(U)−E{ψ2(U)}]+

[ψ1(U)Y − E{ψ1(U)Y }] − a1{U − E(U)} and e eXU = X̃ − b0 − b1U = [φ2(U) − E{φ2(U)}] +

[φ1(U)X − E{φ1(U)X}] − b1{U − E(U)}. Therefore, ρeeY U
e eXU

is not necessarily equal ρXY .

However note that ρeeY U
e eXU

= ρXY holds if ψ1(U) = φ1(U) = 1 and ψ2(U) and φ2(U) are both

linear in U , i.e. X̃ = X+c1U +c2 and Ỹ = Y +d1U +d2. This follows from the fact that a1 = c1

and b1 = d1 and hence eeY U = Y −EY and e eXU = X−EX when ψ1(U) = φ1(U) = 1 and ψ2(U)

and φ2(U) are linear in U . An implicit assumption here is that cov(X,U) = cov(Y, U) = 0.

Target of nonparametric partial correlation

The nonparametric partial correlation between Ỹ and X̃ adjusted for U is equivalent to

ρẽeY U
ẽ eXU

, where ẽeY U and ẽ eXU are the errors from the nonparametric regression models Ỹ =

E(Ỹ |U) + ẽeY U and X̃ = E(X̃|U) + ẽ eXU , respectively. Thus, under adjustments (2)-(3), ẽeY U =

Ỹ −E(Ỹ |U) = ψ1(U){Y −E(Y |U)} and ẽ eXU = X̃−E(X̃|U) = φ1(U){X−E(X|U)}. Therefore,

ρẽeY U
ẽ eXU

does not necessarily equal ρXY unless ψ1(U) = φ1(U) = 1, i.e. X̃ = X + φ(U) and

Ỹ = Y + ψ(U) and X and Y are independent of U .
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Table 1: Estimates and approximate 95% confidence intervals (CIs) for ρmRNA,CGG adjusted
for ActRatio in n = 165 female premutation carriers. The first four estimates correspond to
unadjusted Pearson correlation and parametric adjustment (1) from Tassone et al. (2000a),
partial correlation and nonparametric partial correlation with approximate CIs obtained using
Fisher’s z-transformation. CIs for the proposed covariate adjusted correlation, adjusting for
ActRatio, were obtained from the bootstrap percentile method.

Estimation Method Lower Limit Point Estimate Upper Limit

Unadjusted Pearson correlation r eX eY 0.150 0.295 0.427
Parametric adjustment (1) 0.201 0.343 0.471
Partial correlation 0.218 0.357 0.483
Nonparametric partial correlation 0.228 0.367 0.491
Covariate adjusted correlation 0.252 0.372 0.520



Table 2: Estimated absolute bias, variance and MSE of the estimators from proposed covari-
ate adjusted correlation, no adjustment, parametric adjustment (1) of Tassone et al. (2000a),
partial correlation, and nonparametric partial correlations obtained under model (a) (nonpara-
metric additive and multiplicative effects) of Section 4.1 based on 1000 Monte Carlo data sets.
The results are presented for three sample sizes of n = 150, 300 and 600.

n = 150
Estimation Method Bias Variance MSE

Unadjusted Pearson correlation r eX eY 0.154 0.006 0.030
Parametric adjustment (1) 0.240 0.007 0.065
Partial correlation 0.158 0.007 0.032
Nonparametric partial correlation 0.099 0.006 0.016
Covariate adjusted correlation 0.040 0.006 0.008

n = 300
Unadjusted Pearson correlation r eX eY 0.151 0.003 0.026
Parametric adjustment (1) 0.235 0.004 0.059
Partial correlation 0.150 0.003 0.026
Nonparametric partial correlation 0.092 0.003 0.011
Covariate adjusted correlation 0.020 0.003 0.003

n = 600
Unadjusted Pearson correlation r eX eY 0.151 0.002 0.024
Parametric adjustment (1) 0.236 0.002 0.057
Partial correlation 0.151 0.002 0.024
Nonparametric partial correlation 0.092 0.001 0.010
Covariate adjusted correlation 0.013 0.001 0.001



Table 3: Estimated absolute bias, variance and MSE of the estimators of the correlation under
the null case of parametric adjustment given in (1) from proposed covariate adjusted correla-
tion, no adjustment, parametric adjustment (1) of Tassone et al. (2000a), partial correlation,
and nonparametric partial correlations under model (b) (parametric additive and multiplica-
tive effects) of Section 4.1 based on 1000 Monte Carlo data sets. The results are presented for
three sample sizes of n = 150, 300 and 600.

n = 150
Estimation Method Bias Variance MSE

Unadjusted Pearson correlation r eX eY 0.216 0.006 0.052
Parametric adjustment (1) 10−4 0.004 0.004
Partial correlation 0.041 0.004 0.006
Nonparametric partial correlation 0.042 0.004 0.006
Covariate adjusted correlation 0.037 0.006 0.007

n = 300
Unadjusted Pearson correlation r eX eY 0.215 0.003 0.049
Parametric adjustment (1) 0.002 0.002 0.002
Partial correlation 0.038 0.002 0.004
Nonparametric partial correlation 0.039 0.002 0.004
Covariate adjusted correlation 0.020 0.003 0.003

n = 600
Unadjusted Pearson correlation r eX eY 0.215 0.001 0.048
Parametric adjustment (1) 10−4 0.001 0.001
Partial correlation 0.040 0.001 0.003
Nonparametric partial correlation 0.040 0.001 0.003
Covariate adjusted correlation 0.014 0.001 0.001



Table 4: Estimated absolute bias, variance and MSE of the estimators of the correlation under
the null case of additive parametric adjustment from proposed covariate adjusted correlation,
no adjustment, parametric adjustment (1) of Tassone et al. (2000a), partial correlation, and
nonparametric partial correlations under model (c) (parametric additive effects) of Section 4.1
based on 1000 Monte Carlo data sets. The results are presented for three sample sizes of
n = 150, 300 and 600.

n = 150
Estimation Method Bias Variance MSE

Unadjusted Pearson correlation r eX eY 0.3004 0.0009 0.0912
Parametric adjustment (1) 0.1738 0.0018 0.0320
Partial correlation 0.0020 0.0040 0.0040
Nonparametric partial correlation 0.0014 0.0042 0.0042
Covariate adjusted correlation 0.0300 0.0057 0.0065

n = 300
Unadjusted Pearson correlation r eX eY 0.2994 0.0005 0.0901
Parametric adjustment (1) 0.1719 0.0009 0.0304
Partial correlation 0.0015 0.0021 0.0021
Nonparametric partial correlation 0.0022 0.0021 0.0021
Covariate adjusted correlation 0.0200 0.0026 0.0030

n = 600
Unadjusted Pearson correlation r eX eY 0.3001 0.0003 0.0903
Parametric adjustment (1) 0.1737 0.0004 0.0306
Partial correlation 0.0024 0.0010 0.0010
Nonparametric partial correlation 0.0027 0.0010 0.0010
Covariate adjusted correlation 0.0149 0.0012 0.0014



Table 5: Equidistant and nearest neighbor binning for uniform, normal and χ2 distributed U .
The results are presented for three sample sizes of n = 150, 300 and 600.

Unif(0.2, 0.9)
Estimation Method Bias Variance MSE

n = 150 Equidistant binning 0.0392 0.0060 0.0075
Nearest neighbor binning 0.0423 0.0059 0.0077

n = 300 Equidistant binning 0.0223 0.0025 0.0030
Nearest neighbor binning 0.0235 0.0026 0.0032

n = 600 Equidistant binning 0.0130 0.0012 0.0014
Nearest neighbor binning 0.0132 0.0013 0.0015

N(0.55, 0.04)
n = 150 Equidistant binning 0.0453 0.0056 0.0076

Nearest neighbor binning 0.0510 0.0055 0.0081

n = 300 Equidistant binning 0.0303 0.0025 0.0034
Nearest neighbor binning 0.0366 0.0024 0.0038

n = 600 Equidistant binning 0.0215 0.0011 0.0015
Nearest neighbor binning 0.0272 0.0011 0.0018

χ2(1)/6 + 0.4
n = 150 Equidistant binning 0.0335 0.0047 0.0058

Nearest neighbor binning 0.0382 0.0050 0.0064

n = 300 Equidistant binning 0.0207 0.0024 0.0028
Nearest neighbor binning 0.0204 0.0024 0.0028

n = 600 Equidistant binning 0.0150 0.0011 0.0013
Nearest neighbor binning 0.0144 0.0012 0.0014



Table 6: Comparison between the proposed method and the one based on Fisher’s z-
transformation for uniform, normal and χ2 distributed U . The results are presented for three
sample sizes of n = 150, 300 and 600.

Unif(0.2, 0.9)
Estimation Method Bias Variance MSE

n = 150 Proposed Method 0.0392 0.0060 0.0075
Fisher’s z 0.0423 0.0059 0.0077

n = 300 Proposed method 0.0223 0.0025 0.0030
Fisher’s z 0.0235 0.0026 0.0032

n = 600 Proposed method 0.0130 0.0012 0.0014
Fisher’s z 0.0132 0.0013 0.0015

N(0.55, 0.04)
n = 150 Proposed method 0.0391 0.0054 0.0069

Fisher’s z 0.0196 0.0072 0.0075

n = 300 Proposed method 0.0333 0.0025 0.0032
Fisher’s z 0.0124 0.0030 0.0036

n = 600 Proposed method 0.0221 0.0013 0.0018
Fisher’s z 0.0059 0.0014 0.0015

χ2(1)/6 + 0.4
n = 150 Proposed method 0.0305 0.0049 0.0058

Fisher’s z 0.0152 0.0062 0.0064

n = 300 Proposed method 0.0225 0.0025 0.0030
Fisher’s z 0.0025 0.0029 0.0029

n = 600 Proposed method 0.0169 0.0013 0.0015
Fisher’s z 0.0013 0.0014 0.0014



FIGURE CAPTIONS

1. Matrix plot of the observed variables C̃GG, m̃RNA and ActRatio for n = 165 female
premutation carriers.

2. (Top panel) Scatter plot of the local correlation estimates rj versus UM
j for j = 1, . . . , 20

bins, with approximately 8 points per bin. A local linear smooth overlays the scatter
plot with an automatically selected bandwidth of h = 0.1. (Bottom panel) Plot of the
estimated nonparametric density (dashed line) of 1000 standardized bootstrap estimates
used in forming the 95% CI’s for ρmRNA,CGG in the data application. The standard
normal density (solid line) is also given.

3. (Top panel) Plots of ρ̃(u) from the two cases of alternatives to the proposed additive
and multiplicative distortion form. The null hypothesis of additive and multiplicative
forms corresponds to θ = 0, i.e. the (conditional) correlation function ρ̃(u) is constant.
Increasing deviation away from the null is parametrized by θ = 1, . . . , 8. (Bottom panel)
Power curves for the two cases of alternatives/deviations at significance levels α = 0.05
(bottom curve of same line type) and 0.10 for n = 150 (dotted curves), n = 300 (solid
curves) and n = 600 (dash-dotted curves).
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