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Application to Infection-Cardiovascular Risk in Older
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5
Infection and cardiovascular disease are leading causes of hospitalization and death in older patients on dialysis. Our recent work found
an increase in the relative incidence of cardiovascular outcomes during the ∼30 days after infection-related hospitalizations using the case
series model, which adjusts for measured and unmeasured baseline confounders. However, a major challenge in modeling/assessing the
infection-cardiovascular risk hypothesis is that the exact time of infection, or more generally “exposure,” onsets cannot be ascertained
based on hospitalization data. Only imprecise markers of the timing of infection onsets are available. Although there is a large literature on
measurement error in the predictors in regression modeling, to date, there is no work on measurement error on the timing of a time-varying
exposure to our knowledge. Thus, we propose a new method, the measurement error case series (MECS) models, to account for measurement
error in time-varying exposure onsets. We characterized the general nature of bias resulting from estimation that ignores measurement error
and proposed a bias-corrected estimation for the MECS models. We examined in detail the accuracy of the proposed method to estimate
the relative incidence. Hospitalization data from the United States Renal Data System, which captures nearly all (>99%) patients with
end-stage renal disease in the United States over time, are used to illustrate the proposed method. The results suggest that the estimate of
the cardiovascular incidence following the 30 days after infections, a period where acute effects of infection on vascular endothelium may
be most pronounced, is substantially attenuated in the presence of infection onset measurement error.
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1. INTRODUCTION

Infection and cardiovascular disease are leading causes of
hospitalization and death in patients on dialysis in the United
States (United States Renal Data System [USRDS] 2010).25
Smeeth et al. (2004) found that infection is associated with
an increased risk of cardiovascular events, using data from the
United Kingdom General Research Practice Database (Wal-
ley and Mantgani 1997), the largest source of ongoing data
on illness and practice in the United Kingdom. More specif-30
ically, they showed that there is a three- to five-fold increase
in risk (incidence) of a myocardial infarction or stroke after
infection in the general population. Although the precise mech-
anisms by which infection may affect cardiovascular events
are not fully known, infections may affect vascular endothe-35
lium (Mahmoudi, Curzen, and Gallagher 2007), create a chronic
subclinical inflammatory state that affects atherosclerosis (Zhu
et al. 2000), or create a procoagulant state (Macko et al. 1996;
Sun 2006).
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Only recently has the association between acute infections 40
and cardiovascular events been examined in the (United States)
dialysis population, using data from the USRDS that captures
nearly all (>99%) patients with end-stage renal disease in the
United States. More specifically, Dalrymple et al. (2011) found
an increased incidence of cardiovascular events, particularly in 45
the first 30-day risk period after infection-related hospitaliza-
tions in older dialysis patients (age ≥ 65). Infection, or more
generally the “exposure” of interest, was observed over time
during the follow-up/observation period for each individual;
therefore, the exposure was time varying. The case series model, 50
also called self-controlled case series model (Farrington 1995),
was used to estimate the association between the incidence of
cardiovascular events and the time-varying exposure, namely in-
fection. The approach uses only cases, that is, individuals with
one or more cardiovascular events. There are several important 55
reasons and appealing aspects to this modeling choice. First, the
case series method provides consistent estimates of the relative
incidence (e.g., cardiovascular events during the 30-day risk pe-
riod following an infection relative to the control period over the
observation time) using only cases. Second, it implicitly con- 60
trols for all fixed confounders, measured and unmeasured, such
as genetics or coexisting illnesses. This latter point is particu-
larly relevant to the dialysis cohort from the USRDS, as dialysis
patients who do and do not acquire infections likely differ in im-
portant ways not easily measured, therefore making adjustment 65
in (e.g., Poisson) regression modeling infeasible. Third, the case
series model is well suited for this type of hypothesis-driven re-
search because (1) it requires specification of the risk period(s)
a priori and (2) leads to a specific time window to potentially
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examine more aggressive intervention monitoring, such as the70
first 30 days after exposure/infection, for cardiovascular risk re-
duction, in addition to implementation of overall infection con-
trol/prevention strategies and early treatment in this population.

The case series model was originally proposed in 1995 to
investigate the association between an acute outcome and a75
time-varying exposure, more specifically, adverse events and
vaccination. As mentioned above, only individuals with one
or more events are sampled in the case series model. It is
derived from an underlying nonhomogeneous Poisson cohort
model where events and exposure history are available on the80
observation period (ai, bi] for the ith case/individual and with in-
cidence rate λijk = exp(ϕi + αj + βk), where ϕi , αj , and βk are
the individual-specific, jth age group, and kth risk group effects,
respectively. The primary effects of interest are the βk’s. To take
into account the deliberate sampling on cases only, the model85
likelihood is conditional on an event having occurred and the
resulting kernel of the likelihood is multinomial with probabil-
ities depending on the incidence rate λijk. The “self-controlled”
aspect of the method refers to the fact that individual effects ϕi

cancel in the likelihood. The exposure history, that is, the times90
when the exposures occurred, within the observation period of
individual i, namely (ai, bi], is assumed to be known precisely.
For example, in the original application of the case series model,
there is little doubt as to when a vaccination occurs as those can
be ascertained fairly accurately.95

However, a major challenge associated with using the USRDS
hospitalization data to address the infection-cardiovascular risk
hypothesis is that the exact date or time of infection/exposure
onset cannot be ascertained based on hospital claims data, al-
though the discharge date is a surrogate marker for the time100
of infection as it reasonably assures that the infection has oc-
curred by this date. Thus, our previous work used the date of
infection-related hospitalization discharge as the observed time
of infection (Dalrymple et al. 2011). Clearly, this is a conserva-
tive approximation to the true unknown date of infection, which105
most likely occurred sometime during hospitalization or prior
to the start of hospitalization. From a more general perspective,
this can be viewed as a problem of exposure onset measurement
error, where one only observes a marker of the unknown time
of exposure. The lack of an existing method that can handle110
this exposure onset measurement error leads us to propose the
measurement error case series (MECS) model, to more thor-
oughly assess the infection-cardiovascular risk hypothesis in
the dialysis population. Thus, the proposed MECS model in this
work aims to target the true underlying relative incidences using115
imprecise exposure onset times and still retain the advantages
associated with the original case series model.

We note that exposure onset measurement error is distinct
from traditional measurement error in the form of mismeasured
continuous or misclassified categorical variables (e.g., Carroll120
et al. 2006). There is indeed an extensive literature on methods
for dealing with measurement error in the covariates, including
time-varying covariates, in general regression modeling. For ex-
ample, modeling measurement error in time-varying covariates,
such as longitudinal dietary intakes (e.g., from food frequency125
questionnaire [FFQ]), in linear mixed models and survival anal-
ysis were considered by Tosteson et al. (1999) and Liao et al.Q2

(2011), respectively. Measurement error in time-dependent co-
variates, such as growth hormone and binding protein levels, in
pharmacokinetics nonlinear mixed-effects models were consid- 130
ered by Higgins, Davidian, and Giltinan (1997). Other works in-
clude Huang and Wang (2000) and Tsiatis and Davidian (2004),
both in the context of time-to-event data. In the literature on
time-varying covariate measurement error, including the above
referenced works, the main issue is that the longitudinal co- 135
variate measurements themselves, for example, dietary/nutrient
intakes or protein concentrations, are measured with error. The
timing of the covariate measurements, such as when the FFQs
were administered or hourly measurements of serum protein
concentration, is not in doubt. Our work here focuses on mea- 140
surement error in the timing of when the exposures occur over
time, and to date, there has been no work to handle measurement
error in the timing of exposure onset in case series modeling.
There are several works, unrelated to case series modeling and
exposure onset measurement error, that involve the “timing er- 145
ror” of covariates, whose meaning differs completely from the
current work. For example, in Higgins, Davidian, and Giltinan
(1997), this simply refers to covariates measured at different
time points than the response measurement times. Li and Ryan
(2004) considered “mistiming error,” which refers to using a 150
covariate measured at a later known time, such as some known
time after birth or baseline, in place of an intended covariate
at birth, which is not available in a Cox regression model. See
Keiding (1992), who also considered mistimed covariates. We
note that in mistimed covariates, the timing of the covariate is 155
not in doubt (error). One simply uses the covariate measured
at a different known time; hence, the timing of the available
covariate itself is not subject to error.

Some interesting case series applications involve antidepres-
sant use and hip fracture (Hubbard et al. 2003) and prescription 160
medications and motor vehicle crashes (Gibson et al. 2009),
although the original novel proposal by Farrington (1995) was
for investigating associations between time-varying transient
exposures, specifically vaccinations, and adverse events. It is
increasingly recognized as an important method in the analysis 165
of data from biomedical and epidemiological studies. Excellent
expository articles on the practice and implementation of case
series modeling are provided by Whitaker et al. (2006; Whitaker,
Hocine, and Farrington 2009).

The remainder of this article is organized as follows. In 170
Section 2, we introduce the MECS model for exposure onset
measurement error and investigate the bias when ignoring the
measurement error. We also propose a bias-correction method
in Section 2.3 that requires only fitting the ordinary case series
model, ignoring measurement error. In Section 2.4, we examine 175
the accuracy of the proposed bias-correction method in estimat-
ing the true relative incidence of interest. The efficacy of the
proposed approach is examined in extensive simulation studies
in Section 3 and these studies also reveal the nature of bias un-
der different patterns of true exposure effects. We present, for 180
the first time, an assessment of the infection-cardiovascular risk
association in the dialysis population taking into account the
imprecise exposure/infection onset data in Section 4. Finally,
Section 5 provides a discussion of our proposed MECS models
and findings. 185
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2. MEASUREMENT ERROR CASE SERIES MODELS
FOR IMPRECISE EXPOSURE ONSET TIMES

2.1 The Model

The self-controlled case series model was proposed by Far-
rington (1995) and was originally designed to estimate the rel-190
ative incidence of acute events following transient exposures. It
is a retrospective cohort method based on a conditional Pois-
son model requiring cases only and is self-controlled, since all
time-invariant/age-independent confounders are implicitly con-
trolled. The case series method is derived by conditioning on195
the occurrence of an event and the individual’s exposure history
during a fixed observation period, where event counts arise from
a nonhomogeneous Poisson process. For a cohort of N individ-
uals (i = 1, . . . , N ) with one or more events, let (ai, bi] denote
the observation period over time for subject i (e.g., age in days)200
which is partitioned into age intervals (groups) j = 0, . . . , J

and exposure risk periods k = 0, . . . , K . The baseline or control
risk period corresponds to k = 0, which consists of all time peri-
ods outside of the exposure risk periods. Similarly, the reference
age group is j = 0. For example, in the infection-cardiovascular205
example introduced earlier (Dalrymple et al. 2011), the risk peri-
ods are 1–30, 31–60, and 61–90 days (K = 3) after an infection
(and the baseline period consists of observation times outside of
the three risk periods). Figure 1(a) illustrates the follow-up data
for a subject.210

The case series method compares the incidence within a risk
period relative to the incidence in the baseline period, within
each individual. Let the length of time individual i spends in age
group j and risk period k be eijk. Given the exposure history over
the observation period for individual i, the number of events215
in each interval, denoted as nijk, is assumed to follow a nonho-
mogeneous Poisson process with rate λijk = exp(ϕi + αj + βk),

Figure 1. Example of follow-up data for one subject (a) without
and (b) with exposure onset measurement error. Note in (b) that when
exposure onset measurement error is present, the event is now observed
in the baseline period when in truth the event occurs in the exposure
period, attenuating the relative incidence in this case.

that is, nijk ∼ Poisson(eijkλijk). Here the parameters ϕi , αj , and
βk are, respectively, the individual-specific, jth age group rela-
tive to age group j = 0, and kth risk group relative to baseline 220
period k = 0 effects, with α0 = β0 = 0. The parameters of pri-
mary interest are βk , k = 1, . . . , K , the log relative incidences
for the exposure risk periods. The case series model is obtained
by conditioning on the event ni.. =

∑
jk nijk ≥ 1, where ni.. is

the total number of events for individual i. As shown in Farring- 225
ton (1995), the kernel of the case series likelihood is product
multinomial, with the contribution from subject i given as

Li(α,β) =
∏

j,k

π
nijk
ijk (1)

with probabilities

πijk = eijkλijk∑
rs eirsλirs

= eijk exp(ϕi + αj + βk)∑
rs eirs exp(ϕi + αr + βs)

= eijk exp(αj + βk)∑
rs eirs exp(αr + βs)

, (2)

where β = (β1, . . . ,βK ) and α = (α1, . . . ,αJ ). The individual
effects ϕi cancel out, thus, self-controlling for all fixed covari- 230
ates. We refer the reader to Farrington (1995) for details and
also to the excellent expository articles by Whitaker et al. (2006;
Whitaker, Hocine, and Farrington 2009) on the application of
case series models, including study planning guidance and as-
sessment of model assumptions. 235

Next, we introduce the model for exposure onset measure-
ment error, motivated by imprecise infection onset when using
USRDS hospitalization data. Because exposure onset measure-
ment error is largely inconsequential to estimation of age effects,
we focus here on the exposure effects of primary interest (i.e., 240
the β ′s); therefore, we drop subscript j. Also, we consider here,
in more detail, a positive measurement error model because it
is relevant to our current application, where we know that each
exposure/infection must occur prior to the observed discharge
date of an infection-related hospitalization. Thus, we consider 245
the following positive additive exposure onset measurement er-
ror model,

wil = vil + uil, l = 1, . . . , Li, (3)

where wil is the observed exposure onset time, vil is the
true (unobserved) exposure onset time, uil is a positive mea-
surement error (uil > 0) with mean µu = E(uil) and variance 250
σ 2

u = var(uil), and Li is the number of exposures observed for
individual i. For our current application, wil is the infection-
related discharge time. Figure 1(b) illustrates the effects of ex-
posure onset measurement error. We assume that the amount of
measurement error in the exposure time (uil) is less than the risk 255
period length of interest. For example, if the relative incidence
of events associated with the 30-day period after an infection is
of interest, then the uncertainty in the time when the infection
actually occurred should not exceed 30 days. If uil > 30 days,
then one cannot estimate the relative incidence in the 30-day 260
period after an infection, because uil > 30 amounts to not hav-
ing any reliable data for estimation. Thus, this assumption on
the magnitude of the measurement error essentially ensures that
there must be some amount of reliable data for estimation.

We refer to (1)–(3) as the MECS model. As in the case 265
of classical measurement error problems, naive estimation
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ignoring measurement error will be biased. We characterize
the target of the naive estimation, and hence the bias, in
Section 2.2. For the MECS models, given ui = (ui1, . . . , uiLi

),
ñi = (ñi0, . . . , ñiK ) ∼ Mult(ni., π̃ i(ui)), where ñik is the270
observed number of (e.g., cardiovascular) events in risk period
k (k = 0, . . . , K) and π̃ i ≡ π̃ i(ui) = (π̃i0(ui), . . . , π̃iK (ui))
are modified probabilities depending on measurement error
ui . More specifically, we show in the Appendix that π̃ik is a
function of the length of the kth risk period, the true underlying275
rate λik , and a mixture of true rates corresponding to control
and risk periods and measurement error.

We provide the following result (Theorem 1) needed to fully
characterize the bias resulting from ignoring exposure onset
measurement error in Sections 2.2 and 3. For this purpose, we280
further introduce the following notation. Among individuals
with Li ≥ 2 exposures, let L′

i denote the number of (disjoint)
risk segments (L′

i ≤ Li). For example, suppose that individual i
has Li = 5 infections, the risk period of interest is 1–30 days af-
ter an infection, infection 3 occurs within the 30-day risk period285
after infection 2 (i.e., the 30-day risk periods for infections 2
and 3 overlap), and similarly, infection 5 occurs within 30 days
of infection 4. Then we have L′

i = 3 risk segments defined by
infection 1, infections 2 and 3, and infections 4 and 5. We refer
to the later two risk segments as “overlapping” risk segments.290
Thus, we have the following result for the general MECS model
and a special case with potential overlapping risk segments. It
is assumed that risk periods are adjacent following an expo-
sure, for instance, 1–30, 31–60, and 61–90 days following an
exposure. We defer the proof to the Appendix.295

Theorem 1. Under the general MECS models (1)–(3) with Li

exposures and nonoverlapping risk segments,

E(ñik) =






ni.'
−1
i {eikλik + Liµu(λi,k+1 − λik)},

k = 0, 1, . . . , K − 1

ni.'
−1
i {eiKλiK + Liµu(λi0 − λiK )},

k = K

, (4)

where 'i =
∑

r eirλir . Furthermore, for MECS models with
one risk period, individuals with multiple exposures, and possi-
bly with overlaps, E(ñik) in (4) holds with Li replaced by L′

i ,300
the number of disjoint risk segments.

Remarks. Our studies in Section 3 show that the MECS model
with nonoverlapping risk segments leads to the most severe bias
on average; therefore, this case is of particular relevance to
understanding the extent and nature of bias when ignoring ex-305
posure onset measurement error. Overlapping risk segments are
relatively rare, although we also examine their effects on esti-
mation bias as well. We discuss the above result for common
MECS models (e.g., with K = 1 risk period) when there are
possibly overlapping risk segments in the Appendix. Also, al-310
though not directly applicable to our specific application in this
work, the risk periods need not be adjacent in the case series
model generally. Equation (4) can be extended to this case and
we discuss this in the Appendix section.

In the special case with one risk group (K = 1), we have that 315
(4) reduces to

E(ñi1) = ni.

ei1λi1 + Liµu(λi0 − λi1)
ei0 + ei1λi1

= ni.

ei1 exp(β1) + Liµu(1 − exp(β1))
ei0 + ei1 exp(β1)

.

Thus, from the above equality, we note that limµu→0 E(ñi1) =
ni.πi1, providing an approach to bias correction in Section 2.3.

2.2 Bias When Ignoring Exposure Onset Measurement
Error 320

We consider here the bias that results from naive case series
model estimation without accounting for exposure onset mea-
surement error. Together with Theorem 1, the result described in
this section is important for two purposes. First, it will be used
to characterize the general nature of the bias when ignoring ex- 325
posure time measurement error in Section 3. Second, it will be
used to determine the accuracy of the proposed bias-correction
method in estimating the true relative incidence of interest in
Section 2.4.

Consider the observed data {ñi , wi , ei}, where wi = 330
(w1, . . . , wLi

) is the vector of observed exposure times for the ith
subject. The conditional maximum likelihood estimator (MLE)
for the case series model, denoted β̂

∗
, is obtained as a solution

to the set of likelihood equations

N−1
N∑

i=1

(ñik − ni.π̂
∗
ik) = 0, k = 1, 2, . . . , K, (5)

where π̂∗
ik = eik exp(β̂∗

k )/
∑

r eir exp(β̂∗
r ). Details are provided 335

in the section A.2: Estimation via Newton–Raphson. The MLE
is consistent for β∗, which satisfies the estimating equations in
(5) in expectation, that is, β∗ is a solution to

N−1
N∑

i=1

{
E(ñik) − ni.π

∗
ik

}
= 0, k = 1, 2, . . . , K, (6)

with π∗
ik = eik exp(β∗

k )/
∑

r eir exp(β∗
r ). The bias of the naive

case series model ignoring measurement error is the difference 340
between β∗ (the target of β̂

∗
) and β. To solve (6), we note that

substituting the expression for E(ñik) from (4) gives

ak ≡N−1 ∑N
i=1 ni.

[
'−1

i {eikλik+Liµu(λi,k+1−λik)}−π∗
ik

]
=0,

k = 1, . . . , K − 1

aK ≡N−1 ∑N
i=1 ni.

[
'−1

i {eiKλiK +Liµu(λi0−λiK )}−π∗
iK

]
=0,

k = K.

This set of equations can be solved numerically for β∗ by the
Newton–Raphson method where the update of β∗ at iteration t +
1 is β∗(t+1) = β∗(t) − (J(t))−1a(t), with a(t) = (a(t)

1 , . . . , a
(t)
K )T 345

and J(t) is a K × K matrix of partial derivatives evaluated at
β(t);

∂ak

∂β∗
k

= −N−1 ∑N
i=1 ni.π

∗
ik

(
1 − π∗

ik

)
, k = 1, . . . , K

∂ak

∂β∗
l

= N−1 ∑N
i=1 ni.π

∗
ikπ

∗
il , k *= l.
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We use the above theoretical result to study the nature of
bias due to exposure onset measurement error in the simulation
studies of Section 3 for various patterns of exposure effects and350
realistic data scenarios. However, some insights are immediate
from the above result with the simplifying assumption that the
length of observation periods (and risk periods) and the number
of exposures are the same for all subjects. For instance, we have
from (6)355

N−1
N∑

i=1

ni.

ei1 exp(β) + Liµu(1 − exp(β))
ei0 + ei1 exp(β)

−N−1
N∑

i=1

ni.

ei1 exp(β∗)
ei0 + ei1 exp(β∗)

= 0,

where a closed form expression for β∗ is possible under equal
observation and risk periods for all subjects. Thus, in the sim-
ple, but illustrative, case where K = 1 (with Li = 1; dropping
subscript k), we obtain

β∗ = log
{

e1 exp(β) + µu(1 − exp(β))
e0 − µu(1 − exp(β))

}
− log(e1/e0). (7)

From Equation (7), the bias in this special case is apparent; there360
is increasing attenuation of the true relative incidence, exp(β),
as the mean of the exposure onset measurement error, µu, in-
creases. However, the nature of the bias generally is not always
attenuation, as we will demonstrate subsequently in Section 3.
More precisely, if K = 1, the naive estimate will be attenuated,365
but with K > 1 risk periods, the bias can be in either direc-
tions, depending on the pattern of the true relative incidences
of the risk periods. We note that the target of the naive MLE
β̂∗, namely β∗ given in (7), follows from (4), the law of large
numbers and Slutsky’s theorem, since it is straight-forward to370
show that β̂∗ = log(ñ.1/ñ.0) − log(e1/e0). Here ñ.k =

∑
i ñik ,

k = 0, 1.

2.3 Bias-Corrected Estimation Procedure

To motivate our proposed bias-corrected estimation proce-
dure, consider the target of the naive (conditional) MLE, namely375
β∗ given in (7). Note that limµu→0 β

∗ = β, the true unknown
relative incidence parameter of interest. Thus, we propose a
practical case series bias-correction procedure where the pat-
tern of bias as a function of increasing amounts of exposure
onset measurement error (µu) is determined/estimated and then380

extrapolated to the ideal case of no measurement error in the
time of exposure. We assume that an estimate of the average
amount of exposure onset measurement error µu is available.

The simple steps of this correction procedure are as follows.
First, obtain datasets with increasing exposure onset measure- 385
ment error, that is, with increasing mean µj = µu + τj , by
adding a sequence of constants τj , j = 0, 1, . . . ,M to the ob-
served exposure times where 0 = τ0 < τ1 < · · · < τM and τ0

refers to the observed data. Next, for each j, compute the naive
MLE, β̂

∗(j )
, by applying the standard case series model, ignoring 390

exposure time measurement error. For a given estimate of µu,
fit a least squares regression of β̂

∗
k = (β̂∗(0)

k , β̂
∗(1)
k , . . . , β̂

∗(M)
k )T

on µj and the bias-corrected estimator is taken to be the
extrapolated value at µj = 0, that is, the regression inter-
cept. More precisely, define the (M + 1) × (ν + 1) fixed pre- 395
dictor matrix by Dµ, then the estimated coefficient of the
regression fit is α̂k = (̂αk0, α̂k1, . . . , α̂kν)T = (DT

µDµ)−1DT
µβ̂

∗
k ,

k = 1, . . . , K . Thus, for bias correction, we propose to use the
extrapolated value at µj = 0, that is,

β̂k = α̂k0 = cTβ̂
∗
k, k = 1, 2, . . . , K, (8)

where the vector of constants c = (c0, c1, . . . , cM )T is the first 400
row of the (ν + 1) × (M + 1) matrix (DT

µDµ)−1DT
µ. As we will

detail in Section 2.4, it is adequate in practice to consider a
quadratic regression fit (ν = 2) with Dµ containing predictors
µj and µ2

j .
First, note that although on the surface the proposed bias- 405

corrected estimator appears to resemble the simulation and ex-
trapolation (SIMEX; Cook and Stefanski 1994) method for clas-
sical measurement error in the predictors (Carroll et al. 2006),
it is quite distinct. SIMEX simulates additional datasets with
increasing measurement error variance in the predictors. Such 410
an approach is not appropriate for measurement error in the
time of exposure onset. This is clear when we consider a salient
feature of the bias analysis described in Section 2.2, which is
that the bias does not depend on the exposure time measurement
error variance, as evident from (7). This facet generally holds, 415
as illustrated in Figure 2, for the more general MECS model
described above. Thus, a SIMEX approach is not appropriate
to bias correction for measurement error in the time of expo-
sure. Second, note that there is no simulation involved in our
proposed estimation. 420

Figure 2. Property of exposure onset time measurement error. Bias does not depend on the variance of the measurement error distribution.
Dashed black curves denote naive case series estimates ignoring measurement error, which targets β∗ (dashed gray curves) instead of β (solid
gray line).
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We also note that given an estimate of µu based on auxiliary
data or even knowledge of µu exactly, direct application of the
case series model to the data where one subtracts this estimate
from each observed exposure onset time will not correctly target
the true relative incidences. For this reason, we developed the425
above estimator where extrapolation is made from a sequence
of datasets with additively higher mean measurement error.
We show this explicitly in the Appendix and relate this to the
more general cases of exposure onset measurement error where
u is not strictly positive.430

2.4 Accuracy of the Bias-Correction Method

In this section, we evaluate the asymptotic accuracy of the
bias-corrected estimation procedure to target the relative inci-
dence θk ≡ exp(βk) of interest. More precisely, we investigate
the approximation error in using θ̂k ≡ exp(β̂k) = exp(̂αk0) =435
exp(cTβ̂

∗
k) as an estimator of θk . First, note that since β̂

∗
k is con-

sistent for β∗
k , a solution to (6), we have that β̂k = α̂k0 = cTβ̂

∗
k is

consistent for cTβ∗
k . Because β∗

k is a solution to (6), note that it is
a function of the true effects βT = (β1, . . . ,βK ), the average ex-
posure time measurement error µu, and the observation lengths440
in the risk periods and baseline period {eik} across individuals
i = 1, . . . , N . Thus, the accuracy depends on these parameters
generally. Therefore, to assess accuracy in approximating the
true relative incidence θk with the limit θ∗

k (β) = exp(cTβ∗
k), we

consider the maximum absolute relative approximation error445
(maxARE), defined as a function of the true relative incidences
θ = (θ1, . . . , θK ),

max ARE = max
β

{∣∣∣∣
θk − θ∗

k (β)
θk

∣∣∣∣ , k = 1, . . . , K

}
. (9)

Note that we used the notation θ∗
k (β) to emphasize the de-

pendence on the true parameters β. We first consider the simple
MECS model, with a single risk period K = 1, equal risk pe-450
riod ei1 = e1, and equal follow-up times, as it illustrates clearly
the factors affecting the maximum approximation error. For this
model (dropping subscript k), we have β∗(j ) = log(a + µj ) −
log(b − µj ) − log(e1/e0), where a = e1 exp(β)/(1 − exp(β))
and b = e0/(1 − exp(β)). Considering a third order Taylor ap-455
proximation to log(·) at µj = 0 gives

β∗(j ) ≈ {log(a) + µj/a} + {log(b) − µj/b} − log(e1/e0).

It follows that for a quadratic regression fit (see Section 2.3),
we have

cTβ∗ =
M∑

j=0

cjβ
∗(j ) ≈ log(a) − log(b) − log(e1/e0) = β,

(10)

since a/b = (e1/e0) exp(β),
∑M

j=0 cj = 1 and
∑M

j=0 cjµj =
∑M

j=0 cjµ
2
j = 0.460

The error in the above approximation involves
∑M

j=0 cjµ
3
j ,

∼ a−3, and ∼ b−3. Thus, the error in (10) will depend on two
main factors: the effect size β and the average level of expo-
sure onset time measurement error relative to the risk period
length µu/e1, as well as the relative risk period length to the465
baseline period length e1/e0. Therefore, we examine the er-
ror in the approximation with respect to these parameters. We

examine the maximum absolute relative error (maxARE) as
given in (9). To encompass all reasonable relative incidences
of interest in real applications, we evaluate the accuracy for a 470
wide range of true relative incidences, ranging from a tiny effect
size of 1% (θ = 1.01) to a very large effect size of 1000% (10-
fold; θ = 10). For equal observed risk length e1 = 30 days after
an exposure during 700 days of follow-up (e1/e0 ≈ 4.5%), and
with the average level of exposure onset time measurement error 475
of µu = 4, 6, and 8 days (i.e., µu/e1 ∼ 13.3%, 20%, and 26.7%,
respectively), the maxARE are 0.48%, 1.27%, and 2.84%; thus,
even with the higher relative measurement error of nearly 27%,
the maximum error of θ∗(β) is less than 3% of the true relative
incidence θ . We note that the 2.84% maximum error is associ- 480
ated with the extremely large effect size of θ = 10; therefore,
the maximum relative error is quite low.

More generally, when allowing for varying lengths of the
observed risk period for each individual and varying number
of exposures per person, the maximum relative approximation 485
error is similarly low compared with the simpler case of equal
risk observation lengths considered above. For this, we solve
Equation (6) for β∗ using the Newton–Raphson method de-
scribed in Section 2.2, and then evaluate (9) to determine the
maximum error over the range of β values. Similar to the sim- 490
ple model considered above, the maxARE over all values of
β are 0.52%, 1.34%, and 3.00% corresponding to moderate to
high relative average exposure onset time measurement error,
that is, average µu/e1 ∼ 13.3%, 20%, and 27%. The average
time in the risk period across individuals is 48 days and the 495
average percent of time spent in the risk period relative to the
baseline period is ∼7.5%. These parameters are similar to our
data application in Section 4, where the relative incidences of
cardiovascular events in the 30 days following infection were
estimated to be ∼1.5 to 1.8, corresponding to average exposure 500
onset time measurement error of µu = 4 and µu = 8 days. Un-
der this setting, the approximation error is negligible: 0.02%
and 0.20% for µu = 4 and 8 days, respectively.

The maximum approximation error is similarly low when ex-
tending to models with multiple risk groups, examined in more 505
details in Section 3. For example, with average relative exposure
time measurement error of 20%, the maximum relative error is
∼5% for tiny effect sizes of θ = 1.01 to 1.05, and it reduces to
∼1.5% otherwise. In summary, the limiting value θ∗

k (β) is close
to the true effect θk for all reasonable range of βk and average 510
relative exposure onset time measurement error. However, θ∗

k (β)
is not close to θk arbitrarily and particularly under impractical
conditions in which we expect it not to perform well. For exam-
ple, consider a situation in which there is excessive amount of
measurement error on the time of exposure. For concreteness, 515
consider the case where we are interested in the relative inci-
dence of events in the 30-day risk period following an exposure
with a very high exposure onset measurement error of µu = 15
days, so that on average, we are uncertain as to when the true
exposure actually occurred by 15 days within a relatively small 520
30-day risk window of interest (average 100 × µu/e1 = 50%).
The maximum relative error is 25.7%. However, this reduced
performance is expected since one cannot expect to be able to
estimate the relative incidence of events during a fixed risk pe-
riod following an exposure when one has excessive uncertainties 525
regarding when the exposure actually occurred.
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Figure 3. Patterns of true relative incidence (β) in contiguous risk periods studied in simulations, including (a) decreasing, (b) increasing, (e)
constant, and both symmetric and nonsymmetric mixtures of increasing and decreasing βk’s (pattern c, d, and f).

3. SIMULATION STUDY

3.1 Simulation Design

In this section, we implement a set of simulation studies
to address two specific objectives: (1) characterize the general530
nature of bias as a consequence of data with exposure onset
measurement error and (2) assess the efficacy of the proposed
bias-corrected estimation procedure to target the true relative
incidence in MECS models.

We consider various underlying patterns of true relative535
incidences over multiple risk periods. As illustrated in Figure 3,
these patterns include decreasing, increasing, and constant
relative incidences over risk periods (cases a, b, and e,
respectively), as well as mixtures of increasing and decreasing
incidences (cases c, d, and f). The log relative incidences540
corresponding to these patterns are provided in Table 1,
for example, β = (β1,β2,β3) = (1.099, 0.693, 0.0405) for
pattern (a). For each of these pattern of relative incidences,
we generated the data as follows. The observation period
[ai, bi] is uniformly generated with mean follow-up length of545
700 days for i = 1, . . . , N = 1000 individuals and individual

effects/baseline rates are set to ϕi = log(1/10000). Next,
the marginal number of events, ni., for the ith individual is
generated from a Poisson distribution, truncated at 1 to obtain
cases/individuals with at least one event according to the case 550
series model (Farrington 1995), and these events are distributed
within an individual’s observation period according to the multi-
nomial distribution with probabilities given in Equation (2). The
number of nonoverlapping exposures Li range from 0 to 3 with
probability masses {0.2, 0.4, 0.25, 0.15} and true/unobserved 555
exposure times vil , l = 1, . . . , Li , are uniformly distributed
over the follow-up period. Next, positive measurement error uil ,
for each exposure, is added to the true exposure times to obtain
the observed exposure times, wil = vil + uil . We consider
uniform, normal, and gamma distributed measurement error 560
distributions with variances 1.33, 1.0, and 2.77, respectively.

To characterize the general nature of bias due to exposure
onset measurement error and illustrate how the bias depends on
the average amount of measurement error µu as described in
Section 2.2, we generated data with increasing µu = 565
4, 6, 8, 10, 12, or 14 days. All simulation results reported next
are based on averages over 200 simulated datasets.

Table 1. Bias-corrected estimates β̂ and standard deviations over 200 replications for datasets (each with N = 1000) with three 30-day risk
periods and for risk/effect patterns (a)–(f) described in Figure 3

Pattern True (β1) Est. SD True (β2) Est. SD True (β3) Est. SD

(a) 1.099 1.106 0.129 0.693 0.688 0.151 0.405 0.387 0.172
(b) 0.405 0.405 0.172 0.693 0.672 0.167 1.099 1.128 0.134
(c) 0.693 0.693 0.171 1.099 1.094 0.137 0.693 0.720 0.145
(d) 1.099 1.120 0.131 0.693 0.671 0.156 1.099 1.120 0.136
(e) 0.693 0.686 0.161 0.693 0.683 0.161 0.693 0.703 0.166
(f) 1.099 1.102 0.136 0.405 0.399 0.176 0.693 0.689 0.166
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3.2 Results: Bias When Ignoring Measurement Error
and Bias-Corrected Estimation

To describe the general nature of the asymptotic bias, we570
focus in more details on studies of decreasing and increasing
effects patterns illustrated in Figure 3(a) and 3(b), respectively.
Also, for the description of the bias, we focus on the case with
uniform measurement error and sample size N = 1000. Bias
results for effect patterns (a) and (b) are shown in Figure 4575
as a function of µu. Generally, and as expected, the bias in-
creases with increasing average measurement error µu. As can
be seen, the naive case series estimates (black dashed curve)
target β∗ (dashed gray curve), which is obtained as the solution
to Equation (6) using the Newton–Raphson algorithm described580
in Section 2.2.

When the risk is highest in the first 30 days and decreases with
time, that is, pattern (a), all estimates ignoring measurement
error, β̂∗

1 , β̂∗
2 , and β̂∗

3 , are attenuated. Conversely, when the true
risk increases over time, that is, pattern (b), β̂∗

3 is attenuated585
but β̂∗

1 and β̂∗
2 are inflated. This result is expected, since it

can seen from (A.1) that the bias of the relative incidence in
the kth risk period is a function of the incidence in the next
contiguous risk period, (k + 1), for k = 0, 1, . . . , K − 1. Thus,
if the true relative incidence in risk period k is greater than in risk590
period k + 1, that is, if βk > βk+1, then β∗

k will be attenuated.
If βk < βk+1, then β∗

k will be inflated. Note that β∗
K will usually

be attenuated if exposure onset measurement error is present
since the relative incidence in the Kth risk period is a function
of the incidence in the baseline period. Similar patterns of bias595
hold for different measurement error distributions, for example,
normal and gamma measurement errors. We provide details of
these cases in the online supplementary materials.

Next, in Figure 5, we compare the relative amount of bias as
the average measurement error µu increases for data with no600

Figure 5. Relative estimation bias when ignoring measurement er-
ror for data with (1) complete, (2) partial, or (3) no overlapping risk
segments. Bias is greatest when there are no overlapping risk segments,
least when all risk segments overlap, and intermediate when there is
some/partial overlap. Dashed black curves denote naive case series
estimates ignoring measurement error, which targets β∗ (dashed gray
curves) instead of β (horizontal line).

overlapping risk segments, partial overlapping risk segments,
and complete overlapping risk segments. The simulation setting
for Figure 5 is as described above with a 30-day risk period and
uniformly distributed measurement error. As described earlier

Figure 4. Bias for (a) increasing and (b) decreasing true patterns of log relative incidence β (indicated by horizontal lines) over three risk
periods. Dashed black curves denote naive case series estimates ignoring measurement error, which targets β∗ (dashed gray curves) instead of
β. In pattern (a), all three risk period log relative incidence estimates are attenuated. In pattern (b), the first two log relative incidence estimates
are inflated and the third is attenuated. Also included are 95% confidence intervals (thin dashed lines). Given are averages over 200 simulated
datasets.
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Table 2. (A) Absolute bias for the proposed method and the ratio bias (naive/proposed) and (B) mean square error (MSE) of the naive and the
proposed bias-corrected estimates corresponding to Table 1. See Table 1 caption for details

β1 β2 β3
(A) Bias
Pattern Proposed Ratio Proposed Ratio Proposed Ratio

(a) 0.008 8.125 0.006 11.167 0.019 4.105
(b) 0.003 12.333 0.016 3.562 0.020 4.300
(c) 0.008 5.000 0.004 15.500 0.008 12.000
(d) 0.019 4.526 0.031 0.581 0.005 24.200
(e) 0.008 2.125 0.010 1.700 0.010 7.700
(f) 0.003 29.667 0.007 1.143 0.004 21.000

(B) MSE
Pattern Naive Proposed Naive Proposed Naive Proposed

(a) 0.012 0.017 0.017 0.023 0.021 0.030
(b) 0.015 0.032 0.014 0.024 0.018 0.019
(c) 0.013 0.025 0.010 0.014 0.022 0.027
(d) 0.016 0.017 0.012 0.028 0.026 0.017
(e) 0.011 0.026 0.012 0.026 0.021 0.028
(f) 0.017 0.018 0.013 0.031 0.020 0.028

in Section 2.1, overlapping risk segments are observed in prac-605
tice when a recurrent exposure occurs in the risk period of a
previous exposure. For example, for a risk period of interest de-
fined as 30 days after an infection and with the first and second
infections occurring on days 10 and 35, the length of the risk
segment is 55 days instead of 60 days since days 35–40 over-610
lap. Although nonoverlapping exposures, as described above,
are vastly more common, we also illustrate here the relative dif-
ferences in bias when there are overlapping risk segments. As
illustrated in Figure 5, the bias is greatest when there are no over-
lapping risk segments, least when all risk segments overlap, and615
intermediate when there are some/partial overlaps. Furthermore,
the simulation results confirm the theoretical results described
in Section 2.2 for realistic data with mixtures of nonoverlapping
and overlapping risk segments. Results for different measure-
ment error distributions are similar and are not shown.620

We illustrate through extensive simulation studies the effi-
cacy of the proposed bias-corrected estimation procedure for
the MECS models described in Section 2.3. Table 1 shows re-
sults from the proposed bias-corrected estimation procedure,
using the simple quadratic regression intercept estimate, un-625
der the more general MECS data scenarios for each true effect
pattern in Figure 3(a)–3(f) with N = 1000. For each simulated
dataset with exposure onset time measurement error, increas-
ing constants (τm = 0, 2, 4, . . . , 10 days) were added to each
exposure time and estimates were computed by applying the630
case series model to each dataset as detailed in Section 2.3.
The proposed adjusted estimator performs well for the differ-
ent patterns of risk (a)–(f) and targets the true parameter β.
Table 2 presents the bias and mean squared error (MSE) for the
bias-corrected and the naive estimators. Overall, the MSE for635
the bias-corrected estimate is of similar order as the naive esti-
mate MSE; however as expected, its bias is drastically reduced.
On average, the reduction is ∼9.4 folds across the simulations.
We note that the simulation study assumes that µu is known;
thus the results may be optimistic.640

In addition to uniform exposure onset measurement errors,
we also examined gamma and normally distributed measure-
ment errors, as well as the performance for finite sample sizes.
The adjusted estimates target the true parameters as expected and
these additional results are available in the online supplemental 645
materials. Also, at the suggestion of a reviewer, we provided
more details on the performance as the variance of the measure-
ment error distribution (σ 2

u ) increases in the online supplemen-
tary materials (Table 7). This result illustrates the robustness of
the bias correction to the measurement error variance. 650

Finally, we remark on the choice of µM (i.e., the τj sequence)
in the regression extrapolation. From our experiences, there is
flexibility in the choice of the τj sequence and it is not a ma-
jor factor in the quality of the estimator if chosen reasonably.
In practice, the choice of the sequence {τj }Mj=0 will depend on 655
the estimated average exposure onset measurement error (µu)
relative to the a priori specified risk period of interest. For
example, for the simulation study (and the data application)
where the risk period of interest is the 30-day period(s) after
infection/exposure, the choice of µM = µu + τM should not be 660
excessively small relative to the risk period length. Figure 6 dis-
plays a regression fit through β̂

∗(j )
versus µj = µu + τj with

µu = 4 and µM = 14, demonstrating a very precise extrapola-
tion (black lines). Here the interval µM − µu relative to the risk
period is 1/3. We find that generally µM is selected such that this 665
relative length is about 1/3 to 1/2 to be adequate. To illustrate
how the extrapolation accuracy declines, we chose µM = 10 so
that the relative interval is only 20% of the risk period (gray
lines). However, even with such a small interval where the re-
gression is fitted, the extrapolation is able to correct for most of 670
the bias relative to the naive estimate (asterisk). Since the com-
putational cost of the naive case series estimator is trivial, we
recommend a conservative approach to take M as large as fea-
sible for a given dataset to capture the features of the quadratic
regression fit in the extrapolation. In our applications, we find 675
that it is adequate to take M to be 6–10.
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Figure 6. Illustration of the extrapolation from the regression fit to obtain the bias-corrected relative incidence estimates. The black lines are
the regression fit using µM = 14 and the gray lines are based on µM = 10. The horizontal lines are the true βk’s; the asterisk marks the naive
estimate; the square boxes indicate the bias-corrected estimates for µM = 14 (black) and µM = 10 (gray).

4. APPLICATION: EXAMINING THE
INFECTION-CARDIOVASCULAR RISK HYPOTHESIS

FOR PATIENTS ON DIALYSIS

4.1 MECS Model for Infection-Cardiovascular Risk680
Using USRDS Data

As introduced in Section 1, a major challenge associated with
using the USRDS inpatient hospitalization data to address the
infection-cardiovascular risk hypothesis is that the exact date
or time of infection onset cannot be ascertained precisely, al-685
though the observed discharge date is a good marker for the time
of infection since it reasonably assures that the infection has oc-
curred by this date. Thus, using the observed discharge time as
a marker of the true infection time is a conservative approxima-
tion since the infection most likely occurred sometime during690
or possibly prior to the hospitalization. This modeling strategy
leads to positive infection onset measurement error, and thus
we apply the proposed MECS model to determine the relative
incidence of cardiovascular events in the risk period following
infection. Provided in more detail in Dalrymple et al. (2011),695
in the short period following an infection, specifically the ap-
proximate 30 days after infection, the effects of infection on
vascular endothelium are hypothesized to be most pronounced.
Thus, we focus on this risk period for illustrating the proposed
MECS model. Cardiovascular events were defined as myocar-700
dial infarction, unstable angina, stroke, or transient ischemic at-
tack and infections of interest included septicemia, bacteremia,
peritonitis, endocarditis, soft-tissue, pulmonary, genitourinary,
gastrointestinal, and joint or bone infection. The source popula-
tion included patients 65–100 years of age with end-stage renal705
disease who newly initiated dialysis between January 1, 2000,
and December 31, 2002. Study follow-up ended on December
31, 2004. We refer the reader to Dalrymple et al. (2011) for
further details on the study protocol. The cohort for the analysis
reported below includes N = 16,779 patients with one or more710
cardiovascular events.

Generally, external or auxiliary data sources are needed to
reasonably estimate the measurement error parameter, namely
µu. However, for our current application, we can derive reason-
able bounds on µu by using data on the length of hospitaliza-715
tion stay. If a hospitalization has an infection-related discharge
diagnoses, it is likely that the infection occurred some time dur-
ing the hospitalization stay or, in some cases, possibly shortly
before the start of the hospitalization. The median length of

hospital stays is 8 days in our cohort. Thus, we used µu = 8 720
days as our intermediate estimate. We also used the lower esti-
mate µu = 4, half of the length of a typical hospitalization stay,
to illustrate the reduced biased corresponding to a lower average
(optimistic) level of measurement error, as expected. Thus, we
apply the bias-correction method for the MECS model to ob- 725
tain adjusted estimates of the true relative incidence using these
values of µu. Also, we note that due to the data violating the
assumption of constant risk within a risk period, for illustration
of the bias-correction method, we define the risk period as days
6–30 after an observed infection onset measured with error. The 730
naive and bias-corrected log relative incidences are provided in
Table 3. The naive relative incidence is 1.354 (β̂ = 0.303), that
is, the incidence of a cardiovascular event is 35% higher within
the risk period after an infection compared with the baseline
period. If we estimate that, on average, the observed date of 735
infection is 4 days later than the true date of infection (µu = 4),
then the relative incidence estimate is increased by 16% to 1.516
(β̂ = 0.416) after adjusting for infection onset measurement er-
ror. Similarly, if we instead consider the intermediate estimate
of measurement error µu = 8, the median of the hospitalization 740
length distribution, then the bias-corrected relative incidence es-
timate is 1.768 (β̂ = 0.570), an increase of 41% above the naive
estimate.

Thus, infection onset measurement error led to substantive
attenuation of the direct case series estimate of the relative inci- 745
dence of cardiovascular events following infection in patients on
dialysis. However, from the standard error estimates provided
in Table 3, it is obvious that all analyses lead to the same scien-
tific conclusion that there is an increased risk of cardiovascular

Table 3. Naive and bias-corrected estimates and standard errors for β̂

Log relative Standard
Estimation method incidence error 95% CI

Naive 0.303 0.03 –
Bias-correction µu = 4 0.416 0.05 0.312–0.513
Bias-correction µu = 8 0.570 0.09 0.402–0.734
Bias-correction µ̂u = 5.5 0.470 0.06 0.358–0.586

NOTE: The naive estimate corresponds to applying the case series method to the observed
USRDS data, ignoring the presence of measurement error. The bias-corrected estimates
correspond to applying the proposed correction method and approximate standard errors
were obtained using the bootstrap method (via resampling of subjects). Bootstrap confi-
dence intervals (CIs) are provided for the bias-corrected estimates
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events following infection; only point estimates and precision750
are affected in this data. Reported standard errors for the bias-
corrected estimation are based on 500 bootstrap datasets by
resampling subjects, although SE estimates stabilize at ∼100
bootstrap samples. Bootstrap confidence intervals (CIs) are also
provided, showing that even under the extremely optimistic as-755
sumption of low measurement error (µu = 4), the CI is above
the naive point estimate.

We note that for the USRDS data analysis above, we took a
conservative approach by considering a low and intermediate
value for µu because we do not have a direct estimate of the av-760
erage amount of exposure onset measurement error. Instead, we
arrived at this range based on the available data on the duration
of hospitalization stay, where the median length of stay is 8 days.
Examining both analyses, for µu = 4 and 8, allowed us to as-
sess the degrees of attenuation of the true relative incidence for765
these two levels of measurement error. The analysis correspond-
ing to µu = 4 can be interpreted as a reasonable approximation
to the situation where the distribution of infection onset is highly
skewed to the end of the hospitalization. This is unlikely and
too optimistic, but it provides a lower estimate of attenuation in770
a very optimistic scenario. It is informative that for the USRDS
data, even under this optimistic assumption about µu, the rela-
tive incidence of cardiovascular events is increased by ∼16%,
and the increase is more likely to be in the 23%–41% range, cor-
responding to µu = 5.5 to 8, for instance. However, similar to775
the theory of classical measurement error in the covariates, with
a consistent estimate of µu, say µ̂u, which can be obtained from
an internal subsample or external validation data sources gener-
ally, the proposed bias-correction method for the MECS model
would target the true relative incidence. For our application here,780
if we assume equal likelihood of infection during a hospitaliza-
tion stay, then ui |li ∼ U (0, li), where li is the duration/length
of hospitalization. Thus, µu = E(u) = E{E(ui |li)} and we can
use the consistent estimate µ̂u = 0.5

∑N
i li/N ∼ 11/2 = 5.5

(which is between the 4 and 8 days range we considered785
earlier). For comparison, this analysis is also provided in
Table 3.

4.2 Modeling of USRDS Infection-Cardiovascular Data
via Simulation

In this section, we further analyze the infection-790
cardiovascular hypothesis and the effects of exposure onset
measurement error by modeling the USRDS data character-
istics relevant to case series modeling by simulating data that
matches more precisely the key characteristics of the USRDS
cohort. This allows for a more thorough study of the effects795
of measurement error since the unknown parameters are con-
trolled and can be varied. More precisely, we simulated USRDS
case series data by using the simulation approach described in
Section 3 and matched key relevant characteristics of the US-
RDS data, including the distributions of the ages at the start800
and end of the observation period, the length of follow-up, the
length of baseline and risk periods, and the number of expo-
sures per individual. The sample size is kept at N = 16, 779,
as observed. The distribution of the number of exposures for
each individual, Li , was based on the distribution of the number805
of exposures in the observed data. We note that the number of

exposures in the observed data ranged from 0 to 19. However,
in the simulated data, we restricted the range to no more than 10
exposures as this captured >99% of the original population and
did not affect the analyses. We take the bias-corrected estimates 810
of β in the previous section to model the USRDS data. Once
the number of exposures were generated, the times of exposure
were distributed uniformly across each individual’s observation
history. Figure 7 displays the observed and simulated distribu-
tion of the length of baseline period, observed exposure onset 815
ages, number of exposures, and number of events per individual.
The characteristics of the simulated USRDS data closely track
that of the observed USRDS data.

We apply the case series model directly to both the data with
true exposure times and observed exposure times. As done ear- 820
lier, we assess the effect of measurement error generated from
three different distributions: uniform, normal, and gamma. Only
results from the uniform distribution are presented here but re-
sults from the normal and gamma distributions are similar. Naive
and bias-corrected estimates were obtained and averaged over 825
200 simulated datasets each for µu = 4 and µu = 8. When rel-
atively modest measurement error was present, that is, when
µu = 4 days, namely when uil ∼ Uniform[1, 7], the average
naive and bias-corrected relative incidence estimates were 1.433
and 1.525, respectively. For intermediate level of measurement 830
error, that is, uil ∼ Uniform[5, 11] (µu = 8 days), then the av-
erage relative incidence estimates were 1.518 and 1.784 for the
naive and bias-corrected method, respectively. Thus, the results
are similar to the percent increases observed in the analysis
of the USRDS data of Section 4.1: the bias-corrected relative 835
incidence estimates suggest a 9% (for µu = 4) and 27% (for
µu = 8) increase over the naive relative incidence estimate on
average, a significant difference in this high risk population.

5. DISCUSSION

Motivated by using the USRDS data to assess the infection- 840
cardiovascular risk association in the dialysis population, where
the precise times of infection cannot be ascertained, we pro-
posed the MECS model to take into account the imprecise ex-
posure/infection onset data. We presented, for the first time, a
novel analysis of infection-cardiovascular risk association in a 845
national cohort, using the proposed MECS model. The results
lend additional support to the hypothesis that the ∼30-day period
following infection is associated with a significantly increased
risk/incidence of cardiovascular events. Through several differ-
ent analyses of infection onset measurement error in Section 4, 850
we confirmed the previously reported conclusion of an increased
risk of cardiovascular events following infection-related hospi-
talization, based on the discharge date as a marker of the time of
infection (Dalrymple et al. 2011); furthermore, the estimate of
relative incidence was conservative when ignoring measurement 855
error.

We also provided the asymptotic bias of the case series
model that ignores exposure onset measurement error and
proposed a feasible estimation procedure to correct for the bias
when using the USRDS data. The method performs well in 860
extensive realistic simulation studies, designed to match key
characteristics of the USRDS data for the case series model.
Also, an appealing aspect of the proposed MECS models is that
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Figure 7. Characteristics of observed USRDS data compared with simulated USRDS data.

no new computational tools are needed for estimation, as they
only involve repeated computation of the naive estimator.865

We note that for general application of the MECS models,
additional/auxiliary data are needed to estimate the mean of the
exposure onset measurement error distribution. This is similar to
the need for auxiliary data/information in regression modeling
with traditional measurement error for mismeasured continuous870
or misclassified categorical variables. Depending on the specific
application, additional data to estimate exposure onset measure-
ment error mean can be obtained through a retrospective review
of a subset of subjects to determine true exposure onset times
or follow-up data collection if feasible. In the absence of any875
additional data or if the collection of new data is not practi-
cal, the tools developed in this work can be used in sensitivity
analyses that assume specific values for the mean of exposure
onset measurement error. For our specific application, which
uses inpatient hospitalization data, a conservative marker of in-880
fection onset time is used and reasonable bounds for µu were
determined based on additional data on the length of hospital
stay.

Finally, in our application and the proposed MECS model
framework, the precise onset of the cardiovascular events that885
we consider is reasonably measured with accuracy with respect
to diagnosis and time. Although more rare, inevitably with the
size of the sample analyzed, the timing of some events will not
be accurate. However, although less applicable to our current hy-

pothesis on cardiovascular outcomes/events, measurement error 890
on the precise onset of events generally is possible, as pointed
out by a reviewer. Case series modeling with measurement er-
rors in both the precise onset of events as well as the timing of
exposures presents significant challenges; it is an open problem
at this time. 895

APPENDIX

A.1 Proof of Theorem 1

For the general MECS model with Li exposures for individual i and
with K adjacent risk periods, direct calculations yield

π̃ik(ui) =






'−1
i {eikλik + (λi,k+1 − λik)

∑Li
l=1 uil},

k = 0, 1, . . . , K − 1

'−1
i {eiKλiK + (λi0 − λiK )

∑Li
l=1 uil},

k = K

, (A.1)

where 'i =
∑

r eirλir . To see that the denominator of π̃ik(ui) is 'i , de- 900
note the numerator in (A.1) by δik for k = 0, 1, . . . , K . Then it can be di-
rectly verified that

∑
k δik =

∑
k eikλik . (Therefore,

∑
k π̃ik = 1.) Thus,

E(ñik|ui) = ni.π̃ik(ui) since, conditional on ui , ñi = (ñi0, . . . , ñiK ) ∼
Mult(ni., π̃ i(ui)); E(ñik) given in (4) follows. Next, we consider the
more rare case in applications where two or more exposures may 905
have overlapping risk segments within the risk period (the MECS
model with K = 1), as previously defined in Section 2.1. Suppose that
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there are Li ≥ 2 exposures with L′
i disjoint risk segments (L′

i ≤ Li)
as previously defined prior to Theorem 1. Denote the number of
exposures that form the sth risk segment by ζ (s), where ζ (s) ≥ 1910
(s = 1, . . . , L′

i). Overlapping risk segments correspond to ζ (s) > 1

and note that
∑L′

i
s=1 ζ (s) = Li . The risk period length, ei1, can be parti-

tioned into disjoint risk segment lengths e
(s)
i1 > 0; thus, ei1 =

∑L′
i

s=1 e
(s)
i1 .

Similarly, the baseline period length, ei0, can be partitioned into dis-

joint baseline segment lengths e
(s)
i0 > 0 (s = 1, . . . , L′

i) and e
(L′

i+1)
i0 ≥ 0,915

where the boundary is at the end of the observation period, e
(L′

i+1)
i0 , may

be zero if the end of the observation period occurs within the last expo-

sure risk segment. (Thus, ei0 =
∑L′

i+1
s=1 e

(s)
i0 .) Also, denote the measure-

ment errors associated with the ζ (s) exposures of the sth risk segment
by {uisj ; j = 1, . . . , ζ (s)}, for s = 1, . . . , L′

i . Then the group probabil-920
ities, π̃ik , can be shown to be linear functions of the underlying rates
{λik}, where the coefficients depend on the risk segment lengths {e(s)

i0 }
and {e(s)

i1 }, and the measurement errors {uisj ; j = 1, . . . , ζ (s)}. Similar
to (A.1), the model probabilities for the risk and baseline periods (after
simplification) are given by925

π̃ik(ui) =






'−1
i




ei0λi0 + λi1

L′
i∑

s=1

uis1 − λi0

L′
i∑

s=1

uisζ (s)




 , k = 0

'−1
i




ei1λi1 + λi0

L′
i∑

s=1

uisζ (s) − λi1

L′
i∑

s=1

uis1




 , k = 1

.

Therefore, E(nik) is as given in (4) with Li replaced by L′
i . This

completes the proof of Theorem 1.
For our application of the case series model to infection-

cardiovascular association as well as other applications of this model,
a heightened risk of adverse events following an exposure justifies the930
assumption of adjacent risk periods. However, the risk periods need
not be adjacent in the case series model generally. In this case (for
nonoverlapping exposures), it can be shown that Equation (4) becomes

E(ñik) =






ni.'
−1
i {eikλik + Liµu(λi,0 − λik)},

k = 1, 1, . . . , K

ni.'
−1
i

{

ei0λi0 + Liµu

(
K∑

k=1

λik − Kλi0

)}

,

k = 0

,

A.2 Estimation via Newton–Raphson

Fitting the case series (multinomial) model can be based935
on standard softwares (including SAS, Stata, and R; see
http://statistics.open.ac.uk/sccs) that have routines for Poisson mod-
els with log link function and allow for an offset term log(eijk). For
the MECS estimation proposed, no new computational tools are re-
quired; therefore, existing software can be used. However, it may be940
more efficient with the repeated applications for different µj to use the
Newton–Raphson algorithm directly. We provide here the formulas for
straight-forward implementation. Following the notations introduced
in Section 2.1, we have that log(πijk/πi00) = αj + βk + log(rijk), with
rijk = eijk/ei00. Thus, the log-likelihood for the ith subject is945

.i(α, β) =
J∑

j=0

K∑

k=0

nijk{αj + βk + log(rijk)}

− ni.. log

{
J∑

r=0

K∑

s=0

eirs exp(αr + βs)/ei00

}

and the log-likelihood for N subjects with at least one event is
.(α,β) =

∑N
i=1 .i(α, β). (Note that the second term above is simply

ni.. log(1/πi00).) Thus, direct calculations yield the J + K likelihood
equations:

∂.(α, β)
∂βk

=
N∑

i=1

J∑

j=0

(nijk − ni..πijk) = 0, k = 1, . . . , K

∂.(α, β)
∂αj

=
N∑

i=1

K∑

k=0

(nijk − ni..πijk) = 0, j = 1, . . . , J.

The needed second-order partial derivatives are ∂2.(α, β)/ 950
∂α2

j = −
∑

i ni..πij.(1 − πij.), j = 1, . . . , J ; ∂2.(α,β)/∂αjαl =∑
i ni..πij.πil., j *= l; ∂2.(α,β)/∂β2

k = −
∑

i ni..πi.k(1 − πi.k),
k = 1, . . . , K; ∂2.(α, β)/∂βkβl =

∑
i ni..πi.kπi.l , k *= l; ∂2.(α, β)/

∂αjβk = −
∑

i ni..(πijk − πij.πi.k). The Newton–Raphson up-
date at iteration (t + 1) is θ (t+1) = θ (t) − (H(t))−1q(t), where 955
θ (t) = (α(t)

1 , . . . ,α
(t)
J ,β

(t)
1 , . . . ,β

(t)
K )T, q(t) is the vector of first-order

partial derivatives, and H(t) is the (J + K) × (J + K) Hessian matrix,
both evaluated at θ (t).

A.3 Notes on Other Cases of Exposure Onset Measurement
Error and Bias Correction 960

In this work, we focus on positive exposure onset measurement er-
ror because this model is directly applicable to our primary interest
in analyzing infection-related hospitalizations data from the USRDS.
However, for the proposed MECS models to be more broadly applica-
ble, we provide here notes on the more general case where the variable 965
u is not strictly positive. First, note that when exposure onset is strictly
negative (i.e., u < 0), it can be shown that the expression for E(ñik)
given in (4) holds with µu replaced by E|u|. For the more general case,
let p0 = Pr(u < 0) and p1 = Pr(u ≥ 0). For simplicity of notations,
consider one exposure and risk period (Li = 1, K = 1). Then it can be 970
shown that

E(ñi1) = p0{ei1λi1 + (λi0 − λi1)E[|u|I (u < 0)]}'−1
i

+ p1{ei1λi1 + (λi0 − λi1)E[uI (u ≥ 0)]}'−1
i ,

where I (E) denotes the indicator function for event E. Therefore,
additional/auxiliary data are needed to estimate p0, p1, E[uI (u ≥ 0)]
and E[|u|I (u < 0)]. Auxiliary data in some applications could be based
on retrospective chart review of a subset of subjects to determine true 975
exposure onset, for instance. Otherwise, sensitivity analysis can be
performed for assumed values of these characteristics/parameters of
the distribution of u.

Finally, we point out that the above expression for E(ñi1) explicitly
shows that even when µu is known precisely, case series analysis of 980
data whereby one simply subtracts µu from each observed exposure
onset time with positive measurement error will not target βk . It is clear
that doing so, under positive exposure onset measurement error, will
simply lead to the case of general measurement error.

SUPPLEMENTARY MATERIALS 985

Additional simulation results referred to in Section 3 are available
in mec sup.pdf.

[Received September 2011. Revised April 2012.]
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