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SUMMARY

Covariate-adjusted regression was recently proposed for situations where both predictors and response
in a regression model are not directly observed, but are observed after being contaminated by unknown
functions of a common observable covariate. The method has been appealing because of its flexibility
in targeting the regression coefficients under different forms of distortion. We extend this methodology
proposed for regression into the framework of varying coefficient models, where the goal is to target
the covariate-adjusted relationship between longitudinal variables. The proposed method of covariate-
adjusted varying coefficient model (CAVCM) is illustrated with an analysis of a longitudinal data set
containing calcium absorbtion and intake measurements on 188 subjects. We estimate the age-dependent
relationship between these two variables adjusted for the covariate body surface area. Simulation studies
demonstrate the flexibility of CAVCM in handling different forms of distortion in the longitudinal setting.

Keywords: Covariate-adjusted regression; Local polynomial regression; Longitudinal data; Multiplicative effects;
Smoothing.

1. INTRODUCTION

Covariate-adjusted regression (CAR) has been proposed by Şentürk and Müller (2005a,b) as an adjustment
for the multiplicative effects of a covariate on the response and the predictor, in a regression setting. The
methodology was motivated by a study on hemodialysis patients where the regression relation between
plasma fibrinogen concentration and serum transferrin level was of interest (Kaysen et al., 2003). Body
mass index (kg/m2) was identified as a common covariate affecting both the variables in this study. One
way of adjustment used for body mass index is dividing the variables of interest by it. Normalization
through dividing by a covariate is common in medical studies, where usually some body configuration
measurement like body weight, height, or body mass index is considered as a covariate with multiplicative
effects on the variables of interest. Even though the distortion is thought to be multiplicative, there is still
uncertainty about the exact form of distortion in most cases. Şentürk and Müller proposed a general
adjustment for such data, retaining the multiplicative form but still reflecting the uncertainty by modeling
the effects of the covariate through unknown smooth functions. The observed response and predictor
values for the ith subject are denoted by

Ỹi = ψ(Ui )Yi and X̃i = φ(Ui )Xi , i = 1, . . . , n,
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for a sample of n subjects, where ψ(·) and φ(·) are unknown smooth functions of the observed covariate
U . Here, Y and X denote the underlying unobserved parts of the observed response and predictor that are
thought to be measured in a scale that does not depend on U . CAR uncovers the regression relationship
adjusted for the covariate by giving consistent estimates for the parameters in the underlying, unobserved
regression model

Yi = β0 + β1 Xi + ei ,

based on the observed data (Ỹi , X̃i ,Ui ), i = 1, . . . , n.
The procedure utilizes the identifiability condition of no average distortion, i.e. E(Ỹ ) = E(Y ) and

E(X̃) = E(X). Under this identifiability condition, CAR gives consistent estimates regardless of the
form of distortion considered as long as the distortion on the response and the predictors are of the same
form (see Şentürk and Müller, 2005a, for justification). More specifically, CAR yields consistent estimates
under multiplicative (i.e. Ỹi = ψ(Ui )Yi , X̃i = φ(Ui )Xi ), additive (i.e. Ỹi = ψ(Ui ) + Yi , X̃i = φ(Ui ) +
Xi ), and no distortion (i.e. Ỹi = Yi , X̃i = Xi ). This makes CAR a very flexible adjustment where even
the form of the distortion need not be known.

We propose an extension of the CAR algorithm for longitudinal data, where the measurements taken
on the response and the predictor are time dependent. We focus on the simple case of a cross-sectional
covariate; however, the proposed method can also be applied for the case of a longitudinal covariate as will
be discussed in the Section 6. One example is a study on 188 subjects, where the longitudinal relationship
between calcium intake and absorbtion is of interest (Davis, 2002). The covariate to be adjusted for is
body surface area (BSA) of the subjects and a new adjustment procedure is needed to uncover the time-
dependent relationship between the underlying variables adjusted for this covariate. Denote the response
and the predictor measurements for the ith subject, i = 1, . . . , n, taken at time ti j , j = 1, . . . , Ti , as

Ỹi (ti j ) = ψ(Ui )Yi (ti j ) and X̃i (ti j ) = φ(Ui )Xi (ti j ).

Here, Y and X denote the underlying unobserved longitudinal variables assumed to be related through the
varying coefficient model

Yi (ti j ) = β0(ti j ) + β1(ti j )Xi (ti j ) + ei (ti j ) (1.1)

(Hastie and Tibshirani, 1993). Varying coefficient models are an extension of the regression models where
the coefficients are allowed to vary as smooth functions of a covariate possibly different than the predic-
tors. They have been especially popular in applications to longitudinal data, where the coefficient functions
vary as functions of time. They reduce the modeling bias with their unique structure while also avoiding
the ‘curse of dimensionality’ problem. Wu and Yu (2002) give an overview of applications to longitudinal
data, where the proposed estimation procedures include Hoover et al. (1998), Wu and Chiang (2000), Fan
and Zhang (2000), and Wu et al. (2000) on local least squares, Hoover et al. (1998) and Chiang et al.
(2001) on smoothing splines, and Huang et al. (2004) on basis approximations.

The central goal of this paper is the estimation of the smooth coefficient functions, β0(·) and β1(·) in
(1.1) based on observations of the covariate Ui , and the contaminated observations on the response and
the predictor {Ỹi (ti j ), X̃i (ti j )}. A key observation to reach this goal is that regressing Ỹ on X̃ leads to
another varying coefficient model, where the coefficient functions depend both on time and the covariate
U . This is illustrated in Section 2, where more details on the covariate-adjusted varying coefficient model
(CAVCM) with multiple predictors are provided. A two-step procedure is proposed for estimation in
the CAVCM in Section 3, motivated by the two-step procedure of Fan and Zhang (2000) proposed for
estimation in varying coefficient models. As also argued by Fan and Zhang, a common feature of many
longitudinal studies is that the measurements are collected at the same time points for all subjects with
possibly missing values at few time points for some subjects. Let {t j , j = 1, . . . , T } be the distinct time
points among all ti j , i = 1, . . . , n, j = 1, . . . , Ti . The proposed algorithm targets the raw estimates
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β̂0(t j ) and β̂1(t j ), j = 1, . . . , T , of the varying coefficient functions by fitting CAR to the data collected
at each distinct time point t j , in the first step. The CAR algorithm is appropriate for this step, since the
data observed at each time point t j is independent, collected from different subjects. The final estimates of
the coefficient functions in (1.1) are obtained in the second step by smoothing the scatter plot of the raw
estimates, {t j , β̂r (t j )}T

j=1, for each component r , r = 0, 1, separately. The second step consists of only
one-dimensional smoothing procedures, and can be carried out with any smoothing technique. Therefore,
the proposed estimation procedure is fast, intuitive, and easy to implement with any standard software
containing least-squares procedures.

The proposed estimation procedure for CAVCM also enjoys the same attraction as CAR in that it
targets the coefficient functions regardless of the form of distortion considered under the identifiability
conditions considered for CAVCM discussed in Section 2. In other words, the proposed estimation proce-
dure targets the coefficient functions not only for the multiplicative distortion (i.e. Ỹi (t j ) = ψ(Ui )Yi (t j ),
X̃i (t j ) = φ(Ui )Xi (t j )) but also for additive (i.e. Ỹi (t j ) = ψ(Ui ) + Y j (t j ), X̃i (t j ) = φ(Ui ) + Xi (t j ))
and no distortion (i.e. Ỹi (t j ) = Yi (t j ), X̃i (t j ) = Xi (t j )) as demonstrated through simulation studies in
Section 5. Another advantage of the proposed estimation procedure shown in Section 5 is that it can han-
dle missing values easily. If there are not enough subjects observed at a given time point t j to fit CAR,
the missing raw estimate at t j is imputed through the smoothing in the second step. Application of the
proposed method to the longitudinal calcium data can be found in Section 4.

2. COVARIATE-ADJUSTED VARYING COEFFICIENT MODELS

Consider the general case of an underlying varying coefficient model with p predictors,

Yi (t j ) = β0(t j ) +
p∑

r=1

βr (t j )Xri (t j ) + ei (t j ), (2.1)

evaluated at T distinct time points, t j , j = 1, . . . , T . Here ei (t j ) is a zero-mean stochastic process with
covariance function δ(t j , t j ′) = cov{ei (t j ), ei (t j ′)}, and β0(·), β1(·), . . . , βp(·) are the unknown coeffi-
cient functions of interest. In the varying coefficient model (2.1), Y and Xr are not observable. Instead,
one observes distorted versions (Ỹ , X̃r ), along with a univariate covariate U , where

Ỹi (t j ) = ψ(Ui )Yi (t j ) and X̃ri (t j ) = φr (Ui )Xri (t j ), (2.2)

for r = 1, . . . , p, and φr and ψ are unknown smooth functions of U . The identifiability conditions con-
sidered are an extension of the no-average distortion condition used for CAR. They entail no average dis-
tortion at distinct time points t j , i.e. E{Ỹ (t j )} = E{Y (t j )} and E{X̃(t j )} = E{X (t j )}, for j = 1, . . . , T .
The identifiability conditions can equivalently be written as conditions on the unknown smooth distortion
functions as

E{ψ(Ui )} = 1, E{φr (Ui )} = 1. (2.3)

Model (2.1)–(2.3) will be referred to as the CAVCM.
A central goal is to obtain estimators of the coefficient functions in model (2.1), given the observa-

tions of the covarite U and the distorted observations (Ỹ , X̃r ) in (2.2). The key to the estimation of the
targeted regression functions {βr (·)} is to express the regression of Ỹ on {X̃r }p

r=0 as another varying co-
efficient model. More precisely, under the assumption that (e(·), U , Xr (·)) (r = 1, . . . , p) are mutually
independent at each fixed time point, the regression of Ỹ on {X̃r }p

r=0 can be expressed as

E{Ỹ (t j )|X̃1(t j ), . . . , X̃ p(t j ),U } = γ0(U, t j ) +
p∑

r=1

γr (U, t j )X̃r (t j ),
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where

γ0(U, t j ) = ψ(U )β0(t j ) and γr (U, t j ) = βr (t j )
ψ(U )

φr (U )
.

Therefore,

Ỹi (t j ) = γ0(Ui , t j ) +
p∑

r=1

γr (Ui , t j )X̃ri (t j ) + ε(Ui , t j ), (2.4)

with ε(Ui , t j ) ≡ ψ(Ui )ei (t j ). The assumption that the underlying predictors, Xr (·), and response, Y (·),
are independent of the contaminating variable U is an assumption defining the proposed contamination
setting through defining these unobserved, underlying variables, and for that matter is not one that can be
checked in practice. Thus, the question to be answered in practice is whether or not these independence
conditions help define interpretable latent variables of interest from their observable counterparts. In the
calcium data analyzed, the interpretations of the latent variables are BSA-adjusted calcium intake and
absorbtion.

In the varying coefficient model given in (2.4), the observed variables vary according to two variables
instead of one, the covariate U and time, resulting in two-dimensional coefficient functions. Since the
variables Ỹi (t j ), X̃ri (t j ), and Ui and the time points are all observable, we first target these estimable two-
dimensional coefficient functions, γr (·, ·), through their one-dimensional projections at each time point t j .
The underlying one-dimensional coefficient functions of interest, βr (·), are then targeted using estimates
of γr (·, ·) and the identifiability conditions given in (2.3).

3. TWO-STEP ESTIMATION PROCEDURE

The proposed estimation algorithm is based on a similar idea as the two-step procedure proposed by Fan
and Zhang (2000), for estimation in varying coefficient models. Fan and Zhang considered estimation in
(2.1), when the longitudinal response and predictors can be observed directly, free from any distorting
effects. A common feature of many longitudinal studies is that measurements are collected at the same
time points, {t j , j = 1, . . . , T }, for all subjects with possibly missing values at few time points for some
subjects. Noting that a different linear regression between the response and the predictors applies for each
time point in a varying coefficient model, they regress the response on the predictors at a fixed time point t j

to obtain the raw estimates for the smooth coefficient functions β0(t j ), β1(t j ), . . . , βp(t j ) in the first step.
In the second step, the scatter plots of raw estimates for the r th coefficient function are smoothed versus
the time points, for each component r separately, to obtain the final smooth estimates for the coefficient
functions.

Even though this two-step estimation procedure is easy to implement, involving only linear regression
fits and one-dimensional smoothing procedures, it will not be applicable when the longitudinal response Y
and predictors Xr are not observed directly. In addition, regressing the observed distorted response Ỹ (t j )

on the predictors X̃r (t j ) in the first step of the algorithm will not target βr (t j ) of the underlying varying
coefficient model under the CAVCM. More specifically, it follows from equation (2.4) of Şentürk and
Müller (2005a) that under the multiplicative distorting effects given in (2.2), the raw estimates of Fan and
Zhang for β1(t j ) evaluated at each time point t j in the simple case of one predictor targets

ξ = E{φ(U )ψ(U )}[β0(t j )E{X1(t j )} + β1(t j )E{X2
1(t j )}] − β1(t j )[E{X1(t j )}]2 − β0(t j )E{X1(t j )}

E{φ2(U )}E{X2
1(t j )} − [E{X1(t j )}]2

(3.1)

instead of β1(t j ). It is also shown that ξ can assume any real value, resulting possibly in arbitrarily large
biases for the raw estimates of Fan and Zhang if the distortion covariate is ignored within the CAVCM.
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Covariate-adjusted varying coefficient models 239

The bias created by the final smooth estimates of Fan and Zhang will be investigated in Section 5, through
simulation studies.

Our proposal is geared towards handling distortions on the response and predictors, as commonly en-
countered in medical data. Rather than fitting a linear regression between Ỹ and X̃r observed at each time
point t j , we fit CAR between Ỹ and X̃r , adjusting for U , to obtain the raw estimates β̂0(t j ), β̂1(t j ), . . . ,

β̂p(t j ) in the first step. This is motivated by the fact that a different one-dimensional varying coefficient
model holds at each time point t j in the two-dimensional varying coefficient model given in (2.4). This
one-dimensional varying coefficient model can be expressed as,

Ỹi (t j ) = γ0 j (Ui ) +
p∑

r=1

γr j (Ui )X̃ri (t j ) + ε j (Ui ), (3.2)

where only data observed at a fixed time point t j is used, and the coefficient functions vary depending on
U only. Here the one-dimensional coefficient functions will be related to the constants β0(t j ), β1(t j ), . . . ,
βp(t j ) through the equations

γ0 j (Ui ) = ψ(Ui )β0(t j ) and γr j (Ui ) = βr (t j )
ψ(Ui )

φr (Ui )
, (3.3)

where not necessarily all n subjects but say n j subjects may be observed at time t j , i = 1, . . . , n j . We first
target the coefficient functions γr j (·) in (3.2) through local linear fits, and then arrive at the raw estimate
of βr (t j ) through a weighted average of the estimates of γr j (·), making use of the relations in (3.3) and
the identifiability conditions. We use local polynomial regressions to fit CAR at each time point in the first
step of the algorithm, as it is shown through simulation studies to have the best small sample performance
yielding the smallest mean squared error compared to other binning algorithms (Şentürk and Nguyen,
2005). The second step similarly consists of smoothing the scatter plot of each coefficient component
{t j , β̂r (t j )}T

j=1 to obtain the final estimates β̃0(t j ), β̃1(t j ), . . . , β̃p(t j ).

3.1 Step 1: obtaining the raw estimates

Denote the available (observed) data at time t j by {Ui , X̃i (t j ), Ỹi (t j )}, i = 1, . . . , n j , for a sample of size
n j , where X̃i (t j ) = (X̃1i (t j ), . . . , X̃ pi (t j ))

T are the p-dimensional predictors. The function γr j (U ) in
(3.2) can be approximated based on local polynomial modeling as

γr j (U ) ≈
q∑

k=0

1

k!
γ

(k)
r j (u)(U − u)k, r = 0, 1, . . . , p,

for U in a neighborhood of u. Here, γ
(k)
r j denotes the kth derivative of γr j (·). Consider the local linear

least-squares estimator of γr j through the minimization of

n∑
i=1

[
Ỹi (t j ) −

p∑
r=0

{αr j,0 + αr j,1(Ui − u)}X̃ri (t j )

]2

Kh(Ui − u) (3.4)

with respect to αr j,0 and αr j,1 for a specified kernel function K with bandwidth h where Kh(·) =
K (·/h)/h. We choose to consider local linear fits for computational simplicity, as they are comparable to
local cubic fits for all practical purposes in implementation. Note that X̃0i (t j ) = 1, corresponding to the
intercept function γ0 j (U ). Minimization of criterion (3.4) is a weighted least-squares problem. Assuming
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that X T(t j )WX (t j ) is nonsingular, the solution is

α̂αα j = (X T(t j )WX (t j ))
−1X T(t j )WỸ(t j ),

where X (t j ) is the following n j × 2(p + 1) matrix

X (t j ) =
⎡
⎢⎣

1 (U1 − u) X̃11(t j ) (U1 − u)X̃11(t j ) · · · X̃ p1(t j ) (U1 − u)X̃ p1(t j )
...

...
...

...
...

...
1 (Un − u) X̃1n(t j ) (Un − u)X̃1n(t j ) · · · X̃ pn(t j ) (Un − u)X̃ pn(t j )

⎤
⎥⎦ ,

W = diag{Kh(U1 − u), . . . , Kh(Un − u)} and Ỹ(t j ) = (Ỹ1(t j ), . . . , Ỹn(t j ))
T.

The local least-squares estimator of γr j (u) is given by

γ̂r j (u) = eT
2r+1,2(p+1)α̂αα j = eT

2r+1,2(p+1)(X T(t j )WX (t j ))
−1X T(t j )WỸ(t j ), r = 0, . . . , p,

where e2r+1,2(p+1) is a unit vector of length 2(p + 1) with 1 in position 2r + 1.
The estimators of the targeted regression parameters, {βr (t j )}p

r=0, are then obtained by averaging over
the raw estimates, γ̂r j (Ui ), this time evaluated at the original observations of the covariate (Ui )

n
i=1. More

precisely,

γ̂r j (Ui ) = eT
2r+1,2(p+1)(X T

i (t j )WiXi (t j ))
−1X T

i (t j )Wi Ỹ(t j ),

where Xi (t j ) and Wi are X (t j ) and W with u = Ui . This leads to the following raw estimates:

β̂0(t j ) = n−1
j

n∑
i=1

γ̂0 j (Ui ) and β̂r (t j ) = 1
¯̃Xr (t j )

n j∑
i=1

1

n j
γ̂r j (Ui )X̃ri (t j ), (3.5)

where ¯̃Xr (t j ) = n−1
j

∑n j
i=1 X̃ri (t j ). The estimates are motivated by the relations E{γ0 j (U )} = β0(t j ) and

E{γr j (U )X̃r (t j )} = βr (t j )E{ψ(U )Xr (t j )} = βr (t j )E{Xr (t j )} = βr (t j )E{X̃r (t j )} that follow directly
from (2.3) and (3.3). An important assumption here is that E{X̃r (t j )} or equivalently E{Xr (t j )} is not
equal to 0, since it is targeted by the denominator of β̂r (t j ) in (3.5). The consistency of {β̂r (t j )}p

r=0 for
{βr (t j )}p

r=0 has been shown in Şentürk and Nguyen (2005). As outlined by Şentürk and Nguyen (2005),
we utilize the generalized cross-validation (GCV) criterion proposed by Wahba (1977) and Craven and
Wahba (1979) for the selection of the bandwidth h in the first step of the proposed algorithm with lo-
cal polynomial modeling. Note that other criteria can be used for bandwidth selection at this step. The
literature includes studies of Zhang et al. (1998) and Zhang (2004) that utilized the double-penalized
quasi-likelihood approach to estimate the smoothing parameters and the nonparametric functions simul-
taneously in a mixed model framework.

3.2 Step 2: obtaining the final smooth estimates

The final smooth estimates of βr (t) are computed in the second step of the algorithm for each component
r , r = 0, 1, . . . , p, separately as

β̃r (t) =
T∑

j=1

wr (t j , t)β̂r (t j ).
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The weights wr (t j , t) in the above expression can be obtained from any linear smoothing technique, such
as local polynomial smoothing used by Fan and Zhang (2000) or spline smoothing used by Wu et al.
(2000). This additional smoothing step is needed to bring in information from neighboring time points,
improving on the efficiency of the estimates. It can be easily carried out, using any convenient software,
as it only involves one-dimensional smoothing. Another benefit of this one-dimensional smoothing pro-
cedure is that it would be easier to choose a suitable bandwidth for each component separately through
visualization of the data. This second step is also crucial in providing flexibility in dealing with missing
values. If there are not enough patients observed at a particular time point to fit CAR (a minimum of
roughly 20–30 observations are needed to fit CAR with one predictor as determined through simulation
studies), raw estimates at that time point will be considered missing. These missing values can be imputed
in the second smoothing step.

4. APPLICATION TO LONGITUDINAL DATA: CALCIUM ABSORBTION

The relationship between calcium absorbtion and calcium intake is of interest in addressing the problem of
calcium deficiency. Heaney et al. (1989) have shown a complex inverse relation between the two variables,
where age is among the variables that have a significant influence on calcium absorbtion efficiency. Other
variables found to affect this relationship are body configuration measures such as body mass index or
BSA that are found to be negatively correlated with calcium intake (Heaney, 2003). In order to uncover
the age-dependent regression relation of absorbtion on intake adjusted for BSA, we analyze data from
a longitudinal study on 188 subjects, conducted primarily to search for predictors of calcium absorbtion
(Davis, 2002, p. 336). All the subjects were between 35 and 45 years of age at the beginning of the
study (1967), where repeated measurements per subject were taken in 5-year intervals with the number
of repeated measurements ranging from 1 to 4. Longitudinal measurements were taken on absorbtion and
intake among others.

The coefficient functions from the underlying varying coefficient model

absorbtion = β0(age) + β1(age)intake + e(age) (4.1)

have been estimated adjusted for BSA through fitting a CAVCM to the longitudinal measurements of
˜absorbtion and ˜intake as proposed in Section 3. Three subjects have been removed before analysis, as

their BSA values were outliers. A total of 20 age points, 36, 39, 41, 42, . . . , 55, 56, 58, 61, have been
considered to fit the CAVCM, where the data observed at ages (35, 36, 37), (38, 39, 40), (57, 58, 59), and
(60, 61, 62) have been collapsed to groups concentrated at 36, 39, 58, and 61, respectively. This grouping
was carried out in order to have enough subjects observed at each age point to fit CAR. The number of
subjects per age point ranged from 20 to 39, where all observations came from different subjects even
after the collapsing of age points, since longitudinal measurements per subject were taken in 5-year in-
tervals. The raw estimates β̂0(·) and β̂1(·) of β0(·) and β1(·) given in Figure 1 (top panels, dots) have
been obtained using the weighted averaging described in Section 3.1, using a GCV bandwidth choice
of 0.2. Overlaying the raw estimates are the proposed smooth estimates β̃0(·), β̃1(·) (solid) and Fan and
Zhang’s smooth estimates (dashed) of the two coefficient functions, both obtained through local polyno-
mial smoothing with a bandwidth choice of 7. The 90% pointwise bootstrap confidence intervals (dotted)
are also displayed in Figure 1.

The bootstrap confidence intervals in Figure 1 are based on the (α/2)Bth and (1−α/2)Bth percentiles
of the bootstrap estimates, β̃0(t j )

(b) and β̃1(t j )
(b), obtained from B = 1000 bootstrap samples generated

from the original data. The bootstrap estimates are obtained through the same two-step procedure used for
CAVCM estimates. In the first step, the raw bootstrap estimates for each time point are computed through
CAR based on the bootstrap sample. In the second step, smooth bootstrap estimates are obtained as linear
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Fig. 1. Plots of the estimated smooth coefficient functions β̃0(·) (top left panel) and β̃1(·) (top right panel) for
the underlying varying coefficient model, absorbtion = β0(age) + β1(age)intake + e(age), adjusted for BSA. The
proposed smooth coefficient function estimates (solid) and Fan and Zhang’s unadjusted smooth estimates (dashed)
are both obtained with local polynomial smoothing with a bandwidth choice of 7 for both functions. Overlaying
the smooth estimates are the raw estimates β̂0(·), β̂1(·) (dots) along with 90% pointwise bootstrap confidence in-
tervals (dotted). The bottom two plots correspond to slope functions (dots) from the varying coefficient models,
˜absorbtion = γ0(BSA) + γ1(BSA)˜intake + ε(BSA), for subjects of age less than (bottom left panel) and greater

than 45 (bottom right panel). Overlaying the two slope functions are the slope estimates (solid) from the linear re-

gressions of ˜absorbtion on ˜intake, unadjusted for BSA, for subjects in the two age groups. Total number of repeated
measurements is 515 collected on n = 185 subjects.

combinations of the raw bootstrap estimates β̂r (t j )
(b),

β̃r (t j ′)
(b) =

20∑
j=1

wr (t j , t j ′)β̂r (t j )
(b),

where the weights wr (t j , t j ′) are the ones used in obtaining the CAVCM smooth estimates, β̃r (t j ′). The
estimated nonparametric densities of the standardized 1000 bootstrap estimates of β0(t j ) (top panel) and
β1(t j ) (bottom panel), evaluated at the 20 time points t j , j = 1, . . . , 20, are given in Figure 2, over-
laying the standard normal density. The estimates at all the time points seem to be reasonably close to
normal for both functions, enabling the use of the percentile bootstrap method. We also examine the esti-
mated coverage levels of the proposed bootstrap confidence intervals in the simulation setting described in
Section 5, Model I. One thousand data sets have been generated under the varying coefficient model given
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Fig. 2. Plot of the estimated nonparametric densities of 1000 standardized bootstrap estimates β̃0(t j )
(b) (dotted,

upper panel) and β̃1(t j )
(b) (dotted, lower panel) used in forming 90% pointwise confidence intervals of the varying

coefficient functions in the analysis of calcium absorbtion data. For both coefficients, 20 densities are presented
corresponding to the 20 time points t j that the bootstrap estimates are evaluated at. The standard normal density
(solid) is also given in both panels. A fine binning procedure is followed by local least-squares fits with bandwidth
choices of 0.5 to obtain the nonparametric densities.

in (5.1) below, where 1000 bootstrap samples have been generated from each data set. Figure 3 gives the
estimated coverage values of the proposed confidence intervals for the three coefficient functions in (5.1)
at each time point, corresponding to significance levels of 0.80 and 0.90. The estimated coverage values
are roughly on target. The cross-sectional mean estimates and mean confidence intervals for the three
coefficient functions, averaged over the 1000 Monte Carlo runs, are also shown in Figure 3, overlaying
the true coefficient functions.

As is seen from Fan and Zhang’s estimates, when unadjusted for BSA, the inverse effect of calcium
intake on absorbtion seems to be declining with age. However, when adjusted for BSA with CAVCM,
the inverse effect of calcium intake seems to be staying at about the same level as age increases. Even
though the bootstrap confidence intervals from the CAVCM include the unadjusted estimates as well, the
smooth estimates for BSA-adjusted and unadjusted models seem to differ, especially after the age of 45.
In order to discover the precise nature of the effect of BSA on the relationship between calcium intake
and absorbtion, we fitted varying coefficient models to the two groups of data observed at ages before and
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Fig. 3. Cross-sectional mean functions obtained from 1000 Monte Carlo runs under Model I (Section 5) of the pro-
posed estimates (dotted). Also given are the mean bootstrap confidence intervals (dash-dotted) for the coefficient
functions β0(t) (upper left panel), β1(t) (upper right panel), and β2(t) (lower left panel), overlaying the true coeffi-
cient functions (solid), in (5.1). Estimated coverage levels of the proposed pointwise confidence intervals for β0(t)
(dotted), β1(t) (solid), and β2(t) (dash-dotted) at significance levels of 0.90 and 0.80 are plotted (lower right panel)
against time t j .

after 45. The two models fitted have the following form

˜absorbtion = γ0(BSA) + γ1(BSA)˜intake + ε(BSA), (4.2)

where the longitudinal measurements of intake and absorbtion in the two age groups are collapsed together
and treated as independent for the sake of the argument.

For both age groups, the inverse effect of intake on absorbtion declines in general as BSA increases
as seen in Figure 1 (bottom panels). Nevertheless, one difference between the two age groups is that for
those subjects over 45 with BSA greater than 1.6, the general inverse effect stays constant, whereas for
those under 45, the effect keeps declining after BSA of 1.8. Also given in Figure 1 are the slope estimates

from the linear regressions of ˜absorbtion on ˜intake, unadjusted for BSA. Notice that a general CAR model
targeting the underlying coefficients in the regression model

absorbtion = η0 + η1intake + e

adjusted for BSA would get its estimates by averaging the smooth estimates of the coefficients in model
(4.2). An important observation is that this average and therefore the estimates of such a CAR model would
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have lower values than their unadjusted linear regression counterparts for subjects over 45, but roughly
at the same level for those less than 45. This also explains the fact that the BSA-adjusted varying slope
estimates from model (4.1) are lower than the unadjusted estimates for ages over 45. Hence, adjusting
for or stratifying by BSA, the stronger inverse effect of intake on absorbtion for subjects with lower BSA
values becomes more influential in forming the BSA-adjusted regression coefficients. Thus, adjusted for
BSA, this inverse effect does not decline, but stays at about the same level as the age of the subject
considered increases.

5. SIMULATION STUDY

In this section we compare the performance of CAVCM and Fan and Zhang’s estimation procedure under
three distortion models: multiplicative distortion, additive distortion, and no distortion.

We consider a simulation setup that mimics the calcium absorbtion data, by having 185 subjects with
up to four repeated measurements. We consider the following underlying varying coefficient model

Yi (t j ) = β0(t j ) + β1(t j )X1i (t j ) + β2(t j )X2i (t j ) + ei (t j ), (5.1)

where i = 1, . . . , 185 and the time points t j , j = 1, . . . , 20, are chosen to be equidistant between 0
and 1. The number of repeated measurements for each subject is chosen randomly to be 1, 2, 3, or 4
with probabilities 0.025, 0.025, 0.05, and 0.90, respectively. Thus, there are unequal number of obser-
vations taken on each subject where 80% or more of the data is missing. This yields 20–45 subjects
observed at each time point on average, where the expected number of observations per time point is
around 35. In (5.1), the three targeted coefficient functions are chosen to represent three different types
of curves; β0(t) = 15 + 8.7 sin(2π t), β1(t) = 1 + 11.2t , and β2(t) = 1 + 2t2 + 11.3(1 − t)3. The
predictor X1(t) is a uniform random variable over the time-dependent interval [t/4, 0.6 + t/4], and
X2(t), when conditioning on X1(t), is a normal random variable with mean 1.5, and conditional vari-
ance var{X2(t)|X1(t)} = {1 + X1(t)}/{8 + X1(t)}. The error process e(t) is sampled independently from
the predictors from a stationary Gaussian process with mean zero and a decaying exponential covari-
ance function δ(t j , t j ′) = 5.27 exp(−0.5|t j − t j ′ |). The covariate U is generated from a uniform [0, 1]
distribution.

For the first considered multiplicative distortion model, the observed response and predictors are
modeled as

Ỹi (t j ) = ψ(Ui )Yi (t j ) and X̃ri (t j ) = φr (Ui )Xri (t j ), r = 1, 2, (Model I)

where the distorting functions considered are

ψ(U ) = (U + 3)2/a, φ1(U ) = exp(U )/b, φ2(U ) = (U + 1.5)2/c.

The constants a = 12.33, b = 1.71, and c = 4.08 are chosen such that the distorting functions satisfy the
identifiability constraint of no average distortion in (2.3), namely E{ψ(Ui )} = 1 and E{φr (Ui )} = 1.

For the second considered additive distortion model, the observed response and predictors are modeled
as

Ỹi (t j ) = ψ(Ui ) + Yi (t j ) and X̃ri (t j ) = φr (Ui ) + Xri (t j ), r = 1, 2, (Model II)

where the distorting functions are

ψ(U ) = (U + 3)2 − a, φ1(U ) = exp(U ) − b, φ2(U ) = (U + 1.5)2 − c.

The constants a, b, and c have the same values as in Model I, but this time are subtracted from the specified
functions of U , so that the distorting functions satisfy the identifiability constraint of no average distortion,
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E{Ỹ (t j )} = E{Y (t j )} and E{X̃r (t j )} = E{Xr (t j )}. The identifiability condition entails E{ψ(Ui )} = 0,
and E{φr (Ui )} = 0 in the additive distortion model.

As the last model, we consider no distortion in which case the observed and underlying response and
predictors are the same:

Ỹi (t j ) = Yi (t j ) and X̃ri (t j ) = Xri (t j ), r = 1, 2. (Model III)

For all the above models, the proposed CAVCM smooth estimates β0(·), β1(·), and β2(·) have been
obtained through local polynomial smoothing with cross-validation bandwidth choices of 0.12, 0.20, and
0.14, respectively. The GCV bandwidth choice was 0.5 in obtaining the CAVCM raw estimates in the
first step. Fan and Zhang’s smooth estimates have also been obtained for the three coefficient functions
in the above three models, through local polynomial smoothing with cross-validation bandwidth choices
of 0.14, 0.20, and 0.14, respectively. Smooth estimates of both methods from a single Monte Carlo run
are displayed overlaying the true coefficient functions in Figures 4, 5, and 6 for Models I, II, and III,
respectively. The bias of Fan and Zhang’s raw estimates under the multiplicative distortion model have
been given in (3.1). Thus, even though the smooth estimates of Fan and Zhang are on target for Model
III of no distortion, they have considerable bias as seen in Figures 4 and 5 for the distortion Models I

Fig. 4. Proposed CAVCM estimates (dotted) and Fan and Zhang’s smooth estimates (dash-dotted) for the true coef-
ficient functions β0(t) (solid, top left panel), β1(t) (solid, top right panel), and β2(t) (solid, bottom left panel) for
the multiplicative distortion model, Model I. Both estimates are obtained through local polynomial smoothing in the
second step with cross-validation bandwidth choices of 0.12, 0.20, and 0.14 (CAVCM) and 0.14, 0.20, and 0.14 (Fan
and Zhang) for β0, β1, and β2, respectively.
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Fig. 5. Proposed CAVCM estimates (dotted) and Fan and Zhang’s smooth estimates (dash-dotted) for the true coeffi-
cient functions β0(t) (solid, top left panel), β1(t) (solid, top right panel), and β2(t) (solid, bottom left panel) for the
additive distortion model, Model II. Both estimates are obtained through local polynomial smoothing in the second
step with cross-validation bandwidth choices of 0.12, 0.20, and 0.14 (CAVCM) and 0.14, 0.20, and 0.14 (Fan and
Zhang) for β0, β1, and β2, respectively.

and II, as expected. The CAVCM smooth estimates are on target for all three models. This shows that
the CAVCM method is a very flexible adjustment method, where the form or even the existence of the
distortion need not be known.

Another comparative measure of the performance of the fits obtained by the two methods is mean
absolute deviation error (MADE), or weighted average-squared error (WASE), defined as

MADE = (3T )−1
2∑

r=0

T∑
j

|βr (t j ) − β̃r (t j )|
range(βr )

and WASE = (3T )−1
2∑

r=0

T∑
j

{βr (t j ) − β̃r (t j )}2

range2(βr )
,

where β̃r (t j ) are the smooth estimates for both methods and range(βr ) is the range of the function βr (t).
We also consider unweighted average-squared error (UASE) which is defined in the same way as WASE,
but without any weights in the denominator. The box plots of the MADE, WASE, and UASE ratios of
the proposed CAVCM method over Fan and Zhang’s estimates from 1000 Monte Carlo runs are given
in Figure 7, upper panel for Model I, middle panel for Model II, and lower panel for Model III. These
plots indicate that the proposed estimates indeed handle the multiplicative and additive distortion models
much better than Fan and Zhang’s estimates. Even though CAVCM estimates target the true coefficient
functions also under the case of no distortion, they are outperformed by Fan and Zhang’s estimates in case
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Fig. 6. Proposed CAVCM estimates (dotted) and Fan and Zhang’s smooth estimates (dash-dotted) for the true coeffi-
cient functions β0(t) (solid, top left panel), β1(t) (solid, top right panel), and β2(t) (solid, bottom left panel) for the
no distortion model, Model III. Both estimates are obtained through local polynomial smoothing in the second step
with cross-validation bandwidth choices of 0.12, 0.20, and 0.14 (CAVCM) and 0.14, 0.20, and 0.14 (Fan and Zhang)
for β0, β1, and β2, respectively.

of Model III. This result is not surprising since the simple linear regression fits utilized in the first step of
Fan and Zhang’s algorithm are more efficient than CAR estimates in obtaining the raw estimates at each
time point, for the specific case of no distortion.

6. REMARKS

The proposed method of CAVCM provides a covariate-adjusted analysis for the regression relation be-
tween longitudinal variables. The two-step procedure is especially flexible in two different ways. It is
flexible in handling different forms of distortion as illustrated through simulation studies. Not only the
form but also the existence of the distortion need not be known. This nature of the algorithm is particu-
larly appealing in case of a multiple varying coefficient model, where different predictors may be believed
to have different relations with the covariate. Note, however, that there are some restrictions if the form
of confounding on the response and predictors are not of the same form. More specifically, CAR yields
consistent estimates under a model having an additive distortion in the response with predictors having
either multiplicative or additive distortion. On the other hand, it will not give consistent estimates under a
model with multiplicative distortion on the response with additive distorted predictors.
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Fig. 7. Box plots for the ratios of error measures for proposed CAVCM estimates over Fan and Zhang’s smooth
estimates, for MADE (column 1), WASE (column 2), UASE (column 3), for Model I (upper panel), Model II (middle
panel), and Model III (lower panel). Quotients smaller than 1 show that the proposed method is superior in the
presence of distortion. The box plots are based on ratios obtained from 1000 Monte Carlo runs.

The second flexibility of the proposed method is its applicability to most longitudinal data structures.
Assuming that the data is collected on the same set of time points for different subjects, the proposed
methodology can handle a great percentage of missing values including those cases with only one mea-
surement per some subjects. The only limitation comes from the use of the CAR algorithm in the first step,
entailing the need of more than 20 subjects observed at most of the time points considered. However, the
subjects observed at different time points do not need to be the same or of the same number. The values
of the estimated coefficient functions at those time points where there are not enough subjects to fit CAR
are imputed through the smoothing procedure in the second step.

The CAVCM algorithm can be applied to cases where longitudinal measurements are collected on the
covariate as well. The methodology has been described for the case of cross-sectional covariate so far for
simplicity of notation. For the case of a cross-sectional covariate, a fixed subject will have one reading
on the covariate variable across time, whereas for the case of a longitudinal covariate, the readings will
vary across time even for the same subject. However, in both cases, the observed measurements at a fixed
time point come from different subjects which is a key observation enabling the application of CAR in
the first step of the proposed estimation procedure. Thus, there is no change in the algorithm in case of
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a longitudinal covariate. The only difference between the two cases is one in model assumptions that the
identifiability conditions on the distorting functions given in (2.3) need to hold at each time point for the
case of the longitudinal covariate.

Fan and Zhang (2000) provide expressions for the asymptotic bias and variance of their smooth es-
timates obtained in the second step conditional on the predictor processes and the observed time points.
These results give some insight to the optimal choice of bandwidth for the second smoothing step. The
asymptotic bias and variance of the smooth CAVCM estimates can similarly be obtained once the bias
and variance expressions for the CAR estimates in the first step of the estimation procedure are worked
out. Another idea for future research would be to look for ways of incorporating the correlation structure
of the longitudinal data into the proposed covariate-adjusted varying coefficient estimator to improve its
efficiency.

ACKNOWLEDGMENTS

We are extremely grateful to an anonymous referee, the associate editor, and the editors for many helpful
remarks that improved the exposition of the paper. We also want to acknowledge Danh Nguyen for his
valuable feedback during the preparation of the manuscript.

REFERENCES

CHIANG, C., RICE, J. A. AND WU, C. O. (2001). Smoothing spline estimation for varying coefficient models with
repeatedly measured dependent variables. Journal of the American Statistical Association 96, 605–617.

CRAVEN, P. AND WAHBA, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of
smoothing by the method of generalized cross-validation. Numerical Mathematics 31, 377–403.

DAVIS, C. S. (2002). Statistical Methods for the Analysis of Repeated Measurements. New York: Springer, p. 336.

FAN, J. AND ZHANG, J. (2000). Two-step estimation of functional linear models with applications to longitudinal
data. Journal of the Royal Statistical Society, Series B 62, 303–322.

HASTIE, T. AND TIBSHIRANI, R. (1993). Varying coefficient models. Journal of the Royal Statistical Society, Series
B 55, 757–796.

HEANEY, R. P. (2003). Normalizing calcium intake: projected population effects for body weight. Journal of
Nutrition 133, 268S–270S.

HEANEY, R. P., RECKER, R. R., STEGMAN, M. R. AND MOY, A. J. (1989). Calcium absorption in women: rela-
tionships to calcium intake, estrogen status, age. Journal of Bone and Mineral Research 4, 469–475.

HOOVER, D. R., RICE, J. A., WU, C. O. AND YANG, L.-P. (1998). Nonparametric smoothing estimates of time-
varying coefficient models with longitudinal data. Biometrika 85, 809–822.

HUANG, J. Z., WU, C. O. AND ZHOU, L. (2004). Polynomial spline estimation and inference for varying coefficient
models with longitudinal data. Statistica Sinica 14, 763–788.
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