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Abstract: The method of covariate adjusted regression was recently proposed for situa-
tions where both predictors and response in a regression model are not directly observed,
but are observed after being contaminated by unknown functions of a common observ-
able confounder in a multiplicative fashion. One example is data collected for a study
on diabetes, where the variables of interest, systolic and diastolic blood pressures and
glycosolated hemoglobin levels are known to be influenced by an observable confounder,
body mass index. An estimation procedure based on equidistant binning (EB), currently
available, gives consistent estimators for the regression coefficients adjusted for the con-
founder. In this paper, we propose two new estimation procedures based on nearest
neighbor binning (NB) and local polynomial modeling (LP). Even though, the three
methods perform similarly in terms of their bias, it is shown through simulation studies
that NB has smaller variance compared to EB, and LP yields substantially lower variance
relative to the two binning methods for small to moderate sample sizes. The consistency
and convergence rates of the proposed estimators of LP, with the smallest MSE, are also
established. We illustrate the proposed method of LP with the above mentioned dia-
betes data, where the goal is to uncover the regression relation between the response,
glycosolated hemoglobin levels, and the predictors, systolic and diastolic blood pressures,
adjusted for body mass index.
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1. Introduction

In many medical studies measurements are taken on potential confounding variables that

are believed to affect the primary variables of interest. In such studies, a common interest is

to uncover the relationships between the primary variables of interest adjusted for the effects

of the confounders. One example is data collected for a study on diabetes (Willems, Saunders,

Hunt and Schorling (1997)). The main variables of interest are potential risk factors for

diabetes, including cholesterol and hypertension, and diagnostic variables, such as glycosolated

hemoglobin levels. These variables are believed to be observed as functions of some body

configuration measurement like body mass index (weight/height2) or body weight, which are

also measured. Another example is data collected on hemodialysis patients, where albumin

and transferrin protein concentrations in plasma are among the variables of main interest

(Kaysen et al. (2003)). Similar to the diabetes data, body mass index is again identified

as a common confounder. The interest is in obtaining some normalized forms of the protein

concentrations that are free from the effect of body mass index and thus are comparable across

patients. One simple way of adjustment commonly used in the analysis of such data is through

dividing by the confounder, which suggests that the effect of the confounder on the variables

is thought to be of a multiplicative nature. Based on this observation, Şentürk and Müller

(2005a,b) proposed a more flexible multiplicative adjustment, by modeling the confounding

through unknown functions of the confounder instead of the confounder itself. This reflects

the uncertainty encountered in many applications about the precise nature of the commonly

assumed multiplicative relation between the confounder and the variables. For the simple case

of two variables of interest, Şentürk and Müller’s adjustment models the underlying variables

as

Y =
Ỹ

ψ(U)
, X =

X̃

φ(U)
, (1)

where they are defined to be the parts of the observed variables, Ỹ and X̃, that are independent
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of the observable confounder U . Here, ψ(·) and φ(·) denote unknown smooth contaminating

functions of U .

The main goal is to uncover the relationship between the underlying variables of interest,

Y and X, based on the observations on the confounder U , and on the contaminated variables,

Ỹ and X̃. The need for an adjustment procedure to achieve this goal was demonstrated by

Şentürk and Müller (2005a,b). They showed that the multiplicative confounding by U can

induce artificial relations between Y and X, which can lead to large biases in estimation.

They proposed consistent estimates for the regression coefficients γ0 and γ1 in the model

Y = γ0 + γ1X + e (2)

(Şentürk and Müller (2005a)), where e is the error term, assumed to be independent of X

and U . Consistent estimates for the correlation between Y and X have also been proposed

(Şentürk and Müller (2005b)).

In both cases, a common identifiability condition utilized is that the adjustment is mean

preserving, i.e. the means of adjusted variables are the same as the means of the observed

variables. This identifiability condition amounts to the following constraint on the confounding

functions,

E{ψ(U)} = 1, E{φ(U)} = 1, (3)

under the multiplicative confounding given in (1). It has been shown that under the identifi-

ability condition of no average distortion, the adjustment method proposed for the regression

setting, covariate adjusted regression (CAR), is a general adjustment that not only works

for multiplicative distortion in (1), but also works for additive (i.e. Y = Ỹ − ψ(U) and

X = X̃ − φ(U)) or no distortion (i.e. Y = Ỹ and X = X̃) (Şentürk and Müller (2005a)).

Consistent estimates of γ1 can be obtained for the cases of additive and no distortion by the

standard methods of nonparametric partial regression and least squares regression, respectively.
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However, there existed no standard procedure that could handle multiplicative confounding,

and certainly not one that can handle all three types of confounding together without the need

for the specification of the exact form of the confounding. Thus, one of the main attractions

of the methodology proposed is that the exact form of the distortion (additive, multiplicative

or no distortion) need not be known.

A key observation in formulating the estimation procedure for CAR is that regressing Ỹ

on X̃ leads to a varying coefficient model, since both the observed response and predictor vary

as a function of the confounder U . This is illustrated in Section 2, where more details on the

CAR model are provided. Consistent estimates of the underlying regression coefficients in (2)

are then obtained under the identifiability conditions as weighted averages of the estimated

coefficients of the above mentioned varying coefficient model. More specifically, the estimation

procedure proposed by Şentürk and Müller utilizes equidistant binning (EB) in fitting the

varying coefficient model between Ỹ and X̃. In this paper, two new estimation procedures

are proposed for CAR, where the main difference to EB is that the equidistant binning is

replaced by the nearest neighbor binning (NB) and local polynomial regression (LP) in the

proposed algorithms. All three estimation methods are described in detail in Section 3, where

the consistency and convergence rates of LP estimators are also given. The proofs are deferred

to the Appendix. The simulation study given in Section 4 shows that even though three meth-

ods have similar biases, there are substantial differences in their small sample performances,

mainly due to their variance. The NB approach improves on EB yielding lower variance for

small to moderate sample sizes, and LP proves to be the best estimator among the three with

the lowest variance, and therefore mean squared error. The superiority of the local polyno-

mial smoothing compared to the two binning approaches in fitting varying coefficient models

affects the overall performance of the estimation of the regression coefficients in (2), leading to

estimates with smaller variance. In addition to the lower variance, another advantage of the
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proposed estimation procedures, NB and LP, is that they are easy to implement with existing

software containing least squares procedures. The merging proposed in the implementation of

the EB approach is not as standard and straight forward to implement with existing software.

We illustrate the proposed estimation method of LP which yields the smallest MSE in the

simulation study, with an application to the diabetes data given in Section 5.

2. Covariate Adjusted Regression

Consider the general case of multiple linear regression

Y = γ0 +

p
∑

r=1

γrXr + e, (4)

with p predictors, X1, . . . , Xp, where e is the error with E(e) = 0 and var(e) = σ2, and

γ0, γ1, . . . γp are the unknown parameters of interest. In the regression model (4), Y and Xr

are not observable. Instead, one observes distorted versions (Ỹ , X̃r), along with a univariate

confounder U , where

Ỹ (U) = ψ(U)Y and X̃r(U) = φr(U)Xr, (5)

for r = 1, . . . , p, and φr and ψ are unknown smooth functions of U . The identifiability condi-

tions given in (3) can be extended for the case of multiple linear regression as

E{ψ(U)} = 1, E{φr(U)} = 1. (6)

Model (4) - (6) is the multiplicative distortion or CAR model introduced in Şentürk and Müller

(2005a).

A central goal is to obtain consistent estimators of the regression coefficients in model (4),

given the observations of the confounding variable U and the distorted observations (Ỹ , X̃r)

in (5). As previously described in Şentürk and Müller (2005a), the key to the estimation of

the targeted regression parameters {γr} is to express the regression of Ỹ on {X̃r}
p
r=0 as a
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varying coefficient model. More precisely, under the assumption that (e, U , Xr) are mutually

independent (r = 1, . . . , p), the regression of Ỹ on {X̃r}
p
r=0 can be expressed as

E(Ỹ |X̃, U) = β0(U) +

p
∑

r=1

βr(U)X̃r,

where

β0(U) = ψ(U)γ0, βr(U) = γr
ψ(U)

φr(U)
. (7)

Therefore,

Ỹ = β0(U) +

p
∑

r=1

βr(U)X̃r + ǫ, (8)

with ǫ ≡ ψ(U)e, is a multiple varying-coefficient model (Cleveland, Grosse and Shyu (1991);

Hastie and Tibshirani (1993)). Varying coefficient models are an appealing extension of the

regression models where the coefficients are allowed to vary as smooth functions of a covariate

possibly different than the predictors. They have been popular in diverse application areas,

as they reduce the modeling bias with their unique structure while also avoiding the “curse of

dimensionality” problem. The literature includes Ramsay and Silverman (1997) on functional

data analysis, Nicholls and Quinn (1982) and Chen and Tsay (1993) on nonlinear time series,

Wu and Yu (2002) with their overview of applications to longitudinal data. Some approaches

to estimation in varying coefficient models for independent and identically distributed data

are described in Hoover, Rice, Wu and Yang (1998), Wu and Chiang (2000), Chiang, Rice and

Wu (2001), Cai, Fan and Li (2000) and Fan and Zhang (1999).

3. Estimation Procedures

The estimation of the regression coefficients {γr}
p
r=0 in (4) is a two-step estimation proce-

dure. The first step involves estimation of the varying coefficient functions, βr( · ) in (8), which

are estimable since Ỹ , X̃, and U are all observable. The coefficients {γr}
p
r=0 are targeted in

the second step, with weighted averages of the estimated βr( · ), making use of the relations
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between βr( · ) and γr given by (7) and the identifiability conditions. Şentürk and Müller

(2005a) use the method of equidistant binning for the estimation of βr( · ) in the first step.

They divide the support of U into m bins and then fit linear regressions of Ỹ on X̃ using

the data falling within each bin. The regression coefficients estimated in each bin are the raw

estimates of βr( · ). In the second step, estimates of {γr}
p
r=0 are obtained based on weighted

averages of these raw estimates coming from each bin. We propose two new estimation proce-

dures where in the first proposed method, the nearest neighbor binning approach is explored in

place of equidistant binning. The second proposed method utilizes a more advanced smoothing

method, local polynomial modeling in estimating βr( · ) in the first step. The second step of

LP involves targeting {γr}
p
r=0 with weighted averages of the raw estimates of βr( · ) obtained

in step 1, this time evaluated at the original observed Ui, i = 1, . . . , n, values.

3.1. Estimation via equidistant binning

Recall that the available (observed) data are of the form (Ui, X̃i, Ỹi), i = 1, . . . , n, for a

sample of size n, where X̃i = (X̃1i, . . . , X̃pi)
T are the p-dimensional predictors. It is assumed

that the covariate U is bounded below and above, a ≤ U ≤ b, where a < b are real num-

bers. The estimation procedure initially divides the interval [a, b] into m equidistant intervals,

B1, . . . , Bm, referred to as bins. Let Lj be the number of Ui’s falling into bin j. Further-

more, denote the data for which Ui ∈ Bj by the collection {(U ′

jk, X̃
′

rjk, Ỹ
′

jk), k = 1, . . . , Lj, r =

1, . . . , p} = {(Ui, X̃ri, Ỹi), i = 1, . . . , n, r = 1, . . . , p : Ui ∈ Bj}, where (U ′

jk, X̃
′

rjk, Ỹ
′

jk) is the kth

data element in the jth bin, Bj. Data elements in any given bin are marked by a prime.

After the initial binning of the data, a linear regression is fitted to the data within each

bin Bj, j = 1, . . . ,m. More precisely, the least squares estimator of the multiple regression of

the data in the jth bin is

β̂j = (β̂0j, . . . , β̂pj)
T = (X̃′T

j X̃′

j)
−1X̃′T

j Ỹ′

j, (9)
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where X̃′

j = (X̃′

j1, . . . , X̃
′

jLj
)T is the Lj × (p+1) data matrix in bin j, with the kth observation

X̃′

jk = (1, X̃ ′

1jk, . . . , X̃
′

pjk)
T and the response vector is Ỹ′

j = (Ỹ ′

j1, . . . , Ỹ
′

jLj
)T.

In the second step of the estimation procedure, the estimators of the targeted regression

parameters {γr}
p
r=0 are obtained as weighted averages of the raw estimators {β̂j}

m
j=1 from m

bins,

γ̂0,EB =
m

∑

j=1

Lj

n
β̂0j and γ̂r,EB =

1
¯̃Xr

m
∑

j=1

Lj

n
β̂rj

¯̃X ′

rj, (10)

where ¯̃Xr = n−1
∑n

i=1 X̃ri and ¯̃X ′

rj = L−1
j

∑Lj

k=1 X̃
′

rjk (Şentürk and Müller (2005a)). Note that

the weights depend on the number of data points in each bin, namely Lj for j = 1, . . . ,m. These

estimators are motivated by the relations E{β0(U)} = γ0 and E{βr(U)X̃r} = γrE{ψ(U)Xr} =

γrE(Xr) = γrE(X̃r). (These relations follow directly from (6) and (7).)

Bin width or equivalently the total number of bins formed acts as a smoothing parameter

for EB. It is suggested that the bin width would be chosen such that the average number of

points falling in each bin is p + 1, enough to fit the linear regressions, where p is the number

of parameters of the regression model. In addition, merging of the sparsely populated bins

is introduced for the implementation of the binning algorithm. It entails that if there are

bins with less than p + 1 elements, such bins would be merged with a neighboring bin. Even

though the idea behind merging seems straight forward, its implementation requires careful

calibration. In order not to introduce bias into the procedure, issues such as randomization of

the order of bins merged and the choice of the neighboring bin that they are merged with have

to be considered. This is a potential drawback with the implementation of the EB algorithm.

3.2. Estimation via nearest neighbor binning

As pointed out earlier, for EB, Bj, j = 1, . . . ,m, are fixed and equidistant; however,

the number of data points, Lj, falling into each bin is random. We explore another binning

approach referred to as the nearest neighbor binning. Here, the bin lengths and boundaries are
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random, but each bin contains the same number of observations, denoted by L. NB utilizes

the nearest neighbor idea by first ordering the observed confounder values Ui, i = 1, . . . , n, and

then forming the m = n/L number of bins by grouping the sets of L nearest neighbor values

among the ordered set starting with the first L to the last. Once the bins are formed, the rest

of the procedure is the same as explained for the case of EB. We will denote the estimators

for the target regression parameters from NB as {γ̂r,NB}
p
r=0.

One advantage of NB over EB is that once the number of observations per bin is fixed to

L ≥ p+ 1, there is no need for merging the bins, because each bin has enough points to fit the

linear regressions. This makes the implementation of NB much easier compared to EB.

3.3. Estimation via local polynomial regression

The second proposed approach, LP, estimates the functions {βr(U)}p
r=0 based on local

polynomial modeling instead of binning in the first step. (For details on local polynomial

modeling, see Fan and Gijbels (1996) and references therein). Fan and Zhang (1999, 2000),

Zhang and Lee (2000) and Zhang, Lee and Song (2002) investigated the properties of local

polynomial modeling for the estimation in varying coefficient models. The function βr(U) can

be approximated based on local polynomial modeling as

βr(U) ≈

q
∑

k=0

1

k!
β(k)

r (u)(U − u)k, r = 0, 1, . . . , p, (11)

for U in a neighborhood of u. Here, β
(k)
r denotes the kth derivative of βr( · ). Consider the

local linear least squares estimator of βr through minimization of

n
∑

i=1

[

Ỹi −

p
∑

r=0

{αr,0 + αr,1(Ui − u)}X̃ri

]2

Kh(Ui − u), (12)

with respect to αr,0 and αr,1 for a specified kernel function K with bandwidth h where Kh( · ) =

K( ·/h)/h. We choose to consider local linear fits for computational simplicity, as they are

comparable to local cubic fits for all practical purposes in implementation. Note that X̃0i = 1,
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corresponding to the intercept function β0(U). Minimization of criterion (12) is a weighted

least squares problem. Assuming that XTWX is nonsingular, the solution is

α̂ = (XTWX )−1XTWỸ,

where X is the following n× 2(p+ 1) matrix

X =







1 (U1 − u) X̃11 (U1 − u)X̃11 · · · X̃p1 (U1 − u)X̃p1
...

...
...

...
. . .

...
...

1 (Un − u) X̃1n (Un − u)X̃1n · · · X̃pn (Un − u)X̃pn






,

W = diag{Kh(U1 − u), . . . , Kh(Un − u)} and Ỹ = (Ỹ1, . . . , Ỹn)T.

The local least squares estimator of βr(u) is given by

β̂r(u) = eT
2r+1,2(p+1)α̂ = eT

2r+1,2(p+1)(X
TWX )−1XTWỸ, r = 0, . . . , p, (13)

where e2r+1,2(p+1) is a unit vector of length 2(p+ 1) with 1 in position 2r + 1.

The estimators of the targeted regression parameters, {γr}
p
r=0, are obtained in the second

step by averaging over the raw estimates, β̂r(Ui), this time evaluated at the original observa-

tions of the confounder (Ui)
n
i=1. More precisely,

β̂r(Ui) = eT
2r+1,2(p+1)(X

T
i WiXi)

−1XT
i WiỸ, (14)

where Xi and Wi are X and W with u = Ui. This leads to the following regression parameter

estimates:

γ̂0,LP = n−1

n
∑

i=1

β̂0(Ui) and γ̂r,LP =
1
¯̃Xr

n
∑

i=1

1

n
β̂r(Ui)X̃ri,

motivated similarly as the binning case, by the relations in (7) and the identifiability conditions

in (6). Next, we state the consistency result for the estimators {γ̂r,LP}
p
r=0. The proof is given

in the Appendix.

Theorem 1. Under the technical conditions given in the Appendix, it holds that

γ̂r,LP = γr +Op(n
−1/2) +Op(h

2), r = 0, . . . , p.
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The above result can easily be extended for estimators γ̂r,LP obtained based on qth order

expansions of the varying coefficient functions βr(U), as given in (11). It would similarly hold

that γ̂r,LP = γr +Op(n
−1/2) +Op(h

q+1) for r = 0, . . . , p.

The local polynomial modeling approach requires selection of the bandwidth h. For our

studies, we utilize the generalized cross-validation (GCV) criterion proposed by Wahba (1977),

and Craven and Wahba (1979). Since β̂r(u), given in (13), is linear in {Yi}
n
i=1, the ith fitted

value can be expressed as a linear combination of the response values,

ˆ̃Yi =
n

∑

j=1

{v
(1)
j (Ui) + v

(3)
j (Ui)X̃1i + . . .+ v

(2p+1)
j (Ui)X̃pi}Ỹj

≡
n

∑

i=j

{v∗j (Ui)}Ỹj,

where v(2r+1)(Ui) = [v
(2r+1)
1 (Ui), . . . , v

(2r+1)
n (Ui)] = eT

2r+1,2(p+1)(X
T
i WiXi)

−1X T
i Wi for a fixed

bandwidth h. Furthermore, let ˆ̃
Y = VỸ, where the ith row of V is [v∗1(Ui), v

∗

2(Ui), . . . ,

v∗n(Ui)], i = 1, . . . , n. The bandwidth h is selected to minimize the following GCV criterion,

which is a function of the residual sum of squares RSS(h) = ‖Ỹ − ˆ̃
Y‖2,

hT = argminh{T (h)} = argminh

n−1RSS(h)

[1 − n−1tr(V)]2
.

Compared to the merging algorithm needed for the implementation of EB, the proposed

estimation algorithm via local polynomial regression coupled with the GCV bandwidth choice

is much more straight forward to implement. Any standard statistical software package with a

least squares routine can be used to obtain β̂r(Ui) in (14) and the estimates γ̂r,LP , are simply

weighted averages of β̂r(Ui).

4. Simulation Study

We compare the finite sample performance of the three estimation methods for CAR via

a simulation study. The underlying (unobserved) multiple regression model considered is as
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follows,

Y = 1 + 0.1X1 + 2X2 − 0.2X3 + e, (15)

where the predictors X1, X2, and X3 are distributed as N(2, 1.52), N(0.5, 0.252), N(1, 1), and

the error e is distributed as N(0, σ2 = 0.252). For the distribution of the confounding variable

U , we consider two cases. For the first case, U is generated from a uniform [0, 1] distribution;

and for the second case U is generated from a N(6, 1) distribution truncated beyond ± three

standard deviations. The distorting functions considered are

ψ(U) = (U + 3)2/a, φ1(U) = (U + 10)/b,

φ2(U) = (U + 1)2/c, φ3(U) = (U + 3)/d,

where (a, b, c, d) are (12.339, 10.5, 2.336, 3.5) for U ∼ U [0, 1] and (81.8, 16, 49.8, 9) for U ∼

N(6, 1). The constants a, b, c, and d are chosen such that the distorting functions satisfy the

identifiability constraints in (6), namely E{ψ(U)} = 1 and E{φr(U)} = 1.

For each sample size, n = 50, 70, 100, 150, 200, 400, and 600, we simulate 1000 Monte

Carlo data sets. The estimation procedures described in Section 3, EB, NB and LP, are

applied to each data set to obtain the estimates γ̂r,EB, γ̂r,NB and γ̂r,LP for r = 0, 1, 2, 3,

respectively. For the estimation procedure based on local polynomial regression, we use

a local linear fit (q = 1) and the kernel function is taken to be the Epanechnikov kernel,

K(t) = 0.75(1 − t2)+. The bandwidth selection is based on the generalized cross-validation

criterion, as previously described in Section 3.3. The range of the bandwidths considered

covers up to three standard deviations of the respective confounder distribution. For exam-

ple, the range considered for the case of a uniform confounder is 0.1, 0.15, . . . , 0.95, where the

means of the chosen bandwidths are (0.748,0.749,0.670,0.661,0.605,0.427,0.403) corresponding

to sample sizes n =(50,70,100,150,200,400,600). For EB, the median number of bins formed

after merging are (7,10,14,19,25,39,58) and (7,10,13,18,23,34,51) corresponding to sample sizes
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n =(50,70,100,150,200,400,600), for uniformly and normally distributed confounders, respec-

tively. The number of bins used for NB is chosen the be equal to the number of bins formed

for EB after merging, for each of the 1000 Monte Carlo runs.

The bias, variance and mean squared error of the estimators have been estimated from the

1000 Monte Carlo runs. In obtaining the estimated bias and variance for the binning method,

we excluded four outliers out of 1000 estimates corresponding to a small sample size. The

values excluded were four interquartile range away from the median.

All three methods similarly yielded small biases that were negligible compared to their

variance for all the sample sizes and confounders considered. More specifically, the squared

bias to variance ratios for EB, NB and LP estimators, are all less than 0.5% for the four

coefficients and two confounder distributions considered, making the variance the dominating

factor in the mean squared error of the estimators. The estimated MSE of the estimators are

plotted against the sample size n for the uniformly distributed (left column) and the normally

distributed (right column) confounders in Figure 1. The plots for the estimated variance are

very similar to those of the estimated MSE, and therefore omitted, since the bias is negligible

for this simulation study.

NB yields smaller MSE than EB for both confounders, uniformly for almost all sample

sizes. The difference between the two binning procedures is larger for the case of the normal

confounder as expected, since the procedures are more similar when the underlying distribu-

tion, or the distribution of the confounder is uniform. LP estimators have substantial lower

MSE’s compared to the two binning algorithms, yielding the best small sample performance

among the three estimation procedures considered. For example, in estimation of γ0, for a

small sample size of n = 50, the difference in the estimated MSE of LP and EB, and LP

and NB are 65% and 63%, of the estimated MSE of EB and of the estimated MSE of NB,

respectively. For the moderate sample size of n = 100, these percentages are 68% and 58%. As
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illustrated here, the gain in terms of reduction in MSE by LP can be substantial for small to

moderate sample sizes. The MSE’s of all three methods get closer to each other as the sample

size gets larger (starting from n = 400), as expected.

5. Application to Diabetes Data

The diabetes data analyzed here is a subset of a data set that consists of 19 variables

collected on 1046 subjects in a study to understand the prevalence of diabetes and other car-

diovascular risk factors in Central Virginia for African Americans (Willems, Saunders, Hunt

and Schorling (1997)). The data set is available on the web site of the Vanderbilt medical

center, department of biostatistics, Vanderbilt university school of medicine. The 215 sub-

jects analyzed here are females who were actually screened for diabetes, where a glycosolated

hemoglobin (GlyHb) level above 7.0 was taken as a positive diagnosis for diabetes. Interest lies

in identifying risk factors for diabetes, among which is hypertension. In this study, body mass

index (BMI) was identified to be a factor significantly associated with elevated prevalence of

hypertension and diabetes. In order to adjust for this affect of body mass index, the data was

analyzed stratified according to BMI, where three groups were formed corresponding to what

was considered as low, medium and high BMI values.

We analyze the regression relationship between GlyHb and systolic (SBP ) and diastolic

(DBP ) blood pressures, GlyHb = γ0+γ1SBP+γ2DBP+e, adjusted for the confounder BMI

directly using the proposed LP estimation for CAR. The CAR estimates are compared to those

obtained from the least squares regression of the observed response G̃lyHb on the observed

predictors S̃BP and D̃BP , i.e. estimation without any adjustment for the confounder U .

Four outliers have been removed before analysis, yielding a sample size of n = 211. The point

estimates and confidence intervals for the regression parameters obtained for both methods

are given in Table 1, along with the plots of the estimated coefficient functions from the

13



varying coefficient model G̃lyHb = β0(BMI) + β1(BMI)S̃BP + β2(BMI)D̃BP + ǫ(BMI)

given in Figure 2. In the implementation of CAR with LP, local linear fits (q = 1) have been

used with Epanechnikov kernel. The bandwidth selection of h = 10 is based on generalized

cross validation, as described in Section 3.3. The confidence intervals for no adjustment are t

confidence intervals for the least squares regression.

The confidence intervals based on CAR with LP are bootstrap percentile confidence inter-

vals given as the (α/2)Bth and (1−α/2)Bth percentiles of the bootstrap estimates, γ̂
(b)
0,LP , . . . ,

γ̂
(b)
2,LP , obtained from B = 1000 bootstrap samples generated from the original data. The es-

timated nonparametric densities of the standardized 1000 bootstrap estimates of γ0, γ1 and

γ2 are reasonably close to normal, where they are given in Figure 3, panel 1, overlaying the

standard normal density. We also examine the estimated coverage levels of the bootstrap confi-

dence intervals based on LP via simulation. The simulation setting is as described in Section 4

with the normally distributed confounder. For each sample size, n = 50, 70, 100, and 150, 1000

data sets have been generated, where 1000 bootstrap samples have been generated from each

data set. Generalized cross validation has been used in bandwidth selection for the bootstrap

samples. Figure 3, panel 2, gives the estimated coverage values of the confidence intervals for

γ0 (solid), γ1 (dash-dotted), γ2 (dashed) and γ3 (dotted), corresponding to significance levels

of 0.80, 0.90, and 0.95. The estimated coverage values are about 3 to 4 percent above the

corresponding levels for the small sample sizes of 50 and 70, but they get closer to the real

levels for n =100 and 150.

With the method of no adjustment, DPB is found insignificant at the 0.05 significance

level (95% CI: (-0.0476,0.0059)), for GlyHb, while SBP is found to be of significant positive

predictive value (95% CI: (0.0123, 0.0408)). However, adjusting for BMI with CAR using

LP, DBP is found to have a significant negative effect at the 0.05 significance level (95% CI:

(-0.0578, -0.0034)), while SBP is found similarly to be of positive predictive value (95% CI:

14



(0.0135, 0.0405)) for GlyHb. The positive effect of SBP increases as BMI values increase

from around 20 to 30, and stabilize somewhat for BMI between 30 and 45, with a small dip at

around BMI = 40 as seen in Figure 2. DBP has a more significant negative effect on GlyHb

as the BMI increases, and becomes most significant after BMI = 38 for subjects with higher

BMI values. While the significant positive predictive effect of SBP on GlyHb found confirms

the previous findings that increased body mass index is associated with higher prevalence of

hypertension and diabetes (Willems, Saunders, Hunt and Schorling (1997)), the effects of body

mass index on both DBP and GlyHb seem to be masking the real negative predictive effect

of DBP on GlyHb.

6. Discussion

We have proposed two new estimation procedures for CAR, both of which have improved

on the earlier proposed EB, in terms of variance, MSE, and ease in implementation. The

implementation of NB completely eliminates the need for a merging step, and the implemen-

tation of LP is still more straight forward than the merging of EB. The improvement of NB on

EB in terms of variance becomes more visible as the confounder distribution deviates from a

uniform set-up. Nevertheless, LP, which is also proven to be consistent, improved significantly

on the two binning approaches, yielding a much smaller variance. This might be due to the

fact that local polynomial modeling is a better smoothing technique in general than binning.

In addition, the superior performance of LP shows that in the two-step estimation procedures

considered for CAR, the performance of the smoothing technique chosen for estimation of

the varying coefficient functions in the first step, does affect the overall performance of the

CAR estimates in the second step. With the same argument, it would be of interest to fur-

ther investigate how some other estimation procedures proposed for varying coefficient models

such as smoothing splines, kernel-type estimators, and local maximum likelihood estimates, as
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previously cited in Section 2, perform when integrated into a suitable estimation scheme for

CAR.

Appendix

Technical Conditions

C1. The marginal density f(U) of U has a compact support, say C(u). It has a second

continuous derivative and satisfies infu∈C(u) f(u) > 0 and supu∈C(u) f(u) <∞.

C2. The kernel K(t) is a symmetric density function with compact support.

C3. Contamination functions ψ(·) and φr(·), 1 ≤ r ≤ p, have continuous second derivatives,

ψ(2)(·) 6= 0, φ
(2)
r (·) 6= 0. They also satisfy Eψ(U) = 1, Eφr(U) = 1, φr(·) > 0.

C4. For the predictors, EX2s
r <∞ and E(Xr) 6= 0; for the errors, Ees <∞ for some s > 2.

C5. The variables (e, U,Xr) are mutually independent for r = 1, . . . , p.

C6. h → 0, nh/ log h → ∞, and n2ǫ−1h → ∞ as n → ∞, for some ǫ < 1 − s−1, where s is as

given in Condition C4 .

The following Lemma will be used to prove Theorem 1.

Lemma 1. Let (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed random vec-

tors, where Yi’s are scalar random variables. Assume further that E|ys| <∞ and

supx

∫

|y|sf(x, y)dy < ∞, where f denotes the joint density of (X,Y ). Let K be a bounded

positive function with a bounded support, satisfying a Lipschitz condition. Then

sup
x∈D

∣

∣

∣

∣

n−1

n
∑

i=1

{Kh(Xi − x)Yi − E[Kh(Xi)Yi]}

∣

∣

∣

∣

= Op(rn),

provided that n2ǫ−1h→ ∞ for some ǫ < 1 − s−1, where rn = [nh/ log(1/h)]−1/2.
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Proof of Lemma 1 follows immediately from the result obtained by Mack and Silverman

(1982), as noted by Fan and Zhang (1999).

Proof of Theorem 1

The raw estimates β̂r(Ui) are given by

β̂r(Ui) = eT
∗
(XT

i WiXi)
−1XT

i Wi







∑p
r=0 βr(U1)X̃r1 + ǫ1

...
∑p

r=0 βr(Un)X̃rn + ǫn






,

where e∗ ≡ eT
2r+1,2(p+1).

By Taylor’s expansion, using condition (C3), we have

β̂r(Ui) = eT
∗
(XT

i WiXi)
−1XT

i Wi







∑p
r=0

∑1
k=0 β

(k)
r (Ui)(U1 − Ui)

kX̃r1
...

∑p
r=0

∑1
k=0 β

(k)
r (Ui)(Un − Ui)

kX̃rn







+ eT
∗
(XT

i WiXi)
−1XT

i Wi







∑p
r=0

1
2
β

(2)
r (ηr1)(U1 − Ui)

2X̃r1 + ǫ1
...

∑p
r=0

1
2
β

(2)
r (ηrn)(Un − Ui)

2X̃rn + ǫn







where ηrj are between Ui and Uj for j = 1, . . . , n and r = 0, . . . , p. It follows that

β̂r(Ui) = βr(Ui) + eT
∗
(XT

i WiXi)
−1XT

i Wi







∑p
r=0

1
2
β

(2)
r (Ui)(U1 − Ui)

2X̃r1
...

∑p
r=0

1
2
β

(2)
r (Ui)(Un − Ui)

2X̃rn







+ eT
∗
(XT

i WiXi)
−1XT

i Wi







∑p
r=0

1
2
{β

(2)
r (ηr1) − β

(2)
r (Ui)}(U1 − Ui)

2X̃r1 + ǫ1
...

∑p
r=0

1
2
{β

(2)
r (ηrn) − β

(2)
r (Ui)}(Un − Ui)

2X̃rn + ǫn







≡ βr(Ui) + T1 + T2.

Using conditions (C1), (C2), (C6) and the first part of (C4), Lemma 1 can be applied to

show that the following holds uniformly in i,

XT
i WiX

T
i = nf(Ui)GSiG(1 + op(1))
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and

XT
i Wi







∑p
r=0

1
2
β

(2)
r (Ui)(U1 − Ui)

2X̃r1
...

∑p
r=0

1
2
β

(2)
r (Ui)(Un − Ui)

2X̃rn






=
n

2
f(Ui)h

2Gδi(1 + op(1)),

where G = Ip+1 ⊗ diag{1, h}, Si = E[(X̃0, . . . , X̃p)
T(X̃0, . . . , X̃p)|U = Ui] ⊗ diag{µ0, µ2},

δT
i =

∑p
r=0 β

(2)
r (Ui)[E(X̃0X̃r|U = Ui), . . . , E(X̃pX̃r|U = Ui)] ⊗ [µ2, 0] and µk =

∫

tkK(t)dt.

Combining the above two expressions, we have that T1 = 2−1h2eT
∗
S−1

i δi(1 + op(1)). The term

T2 vanishes by applying Lemma 1, and using the uniform continuity of β
(2)
r (·), compact support

of K, the bounded of the sth moment of the error term e assumed in the second part of (C4),

and E(ǫ|U) = E(ψ(U)e|U) = 0. Thus,

β̂r(Ui) = βr(Ui) +Mih
2(1 + op(1))

uniformly in i, where Mi = 2−1eT
∗
S−1

i δi.

Recalling that βr(Ui) = γrψ(Ui)/φr(Ui), the estimator of γr based on local polynomial

regression is

γ̂r,LP =
1
¯̃Xr

n
∑

i=1

1

n
β̂r(Ui)X̃ri

=
1
¯̃Xr

n
∑

i=1

1

n
γr
ψ(Ui)

φr(Ui)
φr(Ui)Xri +

h2

¯̃Xr

n
∑

i=1

X̃ri

n
Mi(1 + op(1))

= γr +Op(n
−1/2) +Op(h

2),

for r = 1, . . . , p. This follows from Law of Large Numbers, since E(X̃r) = E(φr(U)Xr) =

E(Xr), and E(ψ(U)Xr) = E(Xr) follows from (C5) and the identifiability conditions given in

(C3). Finally, consistency of γ̂0,LP follows from consistency of {γ̂r,LP}
p
r=1. More precisely,

γ̂0,LP = n−1

n
∑

i=1

β̂0(Ui) = n−1

n
∑

i=1

(

Ỹi − β̂1(Ui)X̃1i − . . .− β̂p(Ui)X̃pi

)

= ¯̃Y − γ̂1
¯̃X1 − . . .− γ̂p

ˆ̃Xp = EỸ −

p
∑

r=1

γrEXr +Op(n
−1/2) +Op(h

2)

= γ0 +Op(n
−1/2) +Op(h

2).
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Table 1: Parameter estimates for the regression model GlyHb = γ0 + γ1SBP + γ2DBP + e,

calculated by least squares regression of G̃lyHb on S̃BP and D̃BP and by covariate-adjusted
regression with LP, adjusted for BMI, for 211 subjects. The CIs given are t confidence
intervals, and proposed bootstrap CIs, respectively.

Least Squares Reg. Covariate-Adjusted Reg.
Coefficient Estimate 95% CI Estimate 95% CI

Intercept 3.6370 (1.7629, 5.5111) 4.5359 (2.6159, 6.3444)
SBP 0.0266 (0.0123, 0.0408) 0.0247 (0.0135, 0.0405)
DBP -0.0208 (-0.0476,0.0059) -0.0292 (-0.0578, -0.0034)
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Figure 1: Estimated MSE of the estimators based on two binning algorithms: equidistant
binning (NB), modified or nearest neighbor binning (NB), and local polynomial regression(LP)
for uniformly distributed (left column) and normally distributed (right column) confounders
corresponding to γ0, . . . , γ3 from the simulation model (15).
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Figure 2: Plots of the estimated smooth coefficient functions β̃0(·) (top left panel), β̃1(·)

(top right panel) and β̃2(·) (bottom left panel) for the CAR model G̃lyHB = β0(BMI) +

β1(BMI)S̃BP + β2(BMI)D̃BP + ǫ(BMI) estimated with LP having a generalized cross
validation bandwidth choice of h = 10. Sample size is 211, and BMI = body mass index,
GlyHb = glycosolated hemoglobin level, SBP = systolic blood pressure and DBP = diastolic
blood pressure.
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Figure 3: Plot of the estimated nonparametric densities of 1000 bootstrap estimates γ̂
(b)
0,LP

(dashed), γ̂
(b)
1,LP (dash-dotted), γ̂

(b)
2,LP (dotted) used in forming 95% CI’s of the regression pa-

rameters in the analysis of diabetes data, overlaying the standard normal density (solid), (panel
1). A fine binning procedure is followed by local least squares fits with cross validation band-
width choices of 0.4 to obtain the nonparametric densities. The estimated coverage values of
the proposed bootstrap CI’s for γ0 (solid), γ1 (dash-dotted), γ2 (dashed), γ3 (dotted) in the
simulation model (15) are given in panel 2, corresponding to significance levels 0.95, 0.90, 0.80.
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