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Summary

We propose a generalization of the varying coefficient model for longitudinal data to cases

where not only current but also recent past values of the predictor process affect current re-

sponse. More precisely, the targeted regression coefficient functions of the proposed model

have sliding window supports around current time t. A variant of a recently proposed

two-step estimation method for varying coefficient models is proposed for estimation in

the context of these generalized varying coefficient models, and is found to lead to im-

provements, especially for the case of additive measurement errors in both response and

predictors. The proposed methodology for estimation and inference is also applicable for

the case of additive measurement error in the common versions of varying coefficient mod-

els that relate only current observations of predictor and response processes to each other.

Asymptotic distributions of the proposed estimators are derived, and the model is applied

to the problem of predicting protein concentrations in a longitudinal study. Simulation

studies demonstrate the efficacy of the proposed estimation procedure.

Some key words: Linear regression; Measurement error model; Prediction; Smoothing;

Two-step procedure.



1. Introduction

Longitudinal data are encountered frequently in medical studies, one example being the

study of Kaysen et al. (2001) on 64 haemodialysis patients. Repeated measurements were

taken on each subject to investigate the relationship between the levels of long-lived acute

phase proteins such as serum albumin concentration, C-reactive protein, ceruloplasmin, α1

acid glycoprotein and transferrin. One aim of the study is to predict future concentrations

for one of the proteins from present or past levels of another.

Let {tij , j = 1, . . . , Ti} denote the time-points at which the measurements for the ith

of n subjects were taken. Also, let yij and xij denote the response and predictor values

observed for the ith subject at time tij . A useful way of modelling longitudinal data is

provided by varying coefficient regression models (Hastie & Tibshirani, 1993),

yi(tij) = β0(tij) + β1(tij)xi(tij) + ǫi(tij), (1)

where yi(tij) = yij, xi(tij) = xij and ǫi(tij) is a zero-mean stochastic process with covariance

function δ(t, t′) = cov{ǫi(t), ǫi(t
′)}. The time-dependent relationship between the response

and predictor, both of which are repeatedly measured, is modelled through the coefficient

functions β0(·) and β1(·). For a fixed time tij, (1) reduces to a simple linear model. Varying

coefficient models are appealing as they present a parsimonious and easily interpreted

approach for the modelling of the functional relationship between predictor and response

trajectories. Estimation of the time-varying coefficient functions involves not more than

one-dimensional smoothing (Hoover et al., 1998; Fan & Zhang, 2000; Wu et al., 2000; Wu

& Chiang, 2000; Chiang et al., 2001; and Huang et al., 2004). A thorough literature review

of applications to longitudinal data can be found in Wu & Yu (2002). Note that in general

longitudinal data can be viewed as observed at a common set of time-points, where missing

values, which are missing completely at random, might be present. Let {tj , j = 1, . . . , T}
be the distinct time-points among {tij , j = 1, . . . , Ti, i = 1, . . . , n}. The varying coefficient

model in (1) can then be rewritten as

yi(tj) = β0(tj) + β1(tj)xi(tj) + ǫi(tj), (2)

where not all n subjects might be observed at every tj .
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Model (2) assumes that responses yi(tj) at current time tj are only influenced by current

predictor values xi(tj). This might not be a fully adequate way to model the dynamics

of many systems, in biology for example. A range of past predictor values, in addition

to current values, might play a role in predicting a response in these cases. For example,

proteins considered as predictors may have long half-lives. In this paper we therefore

propose a generalization of the varying coefficient model for longitudinal data to cases

where not only current but also recent past levels of the predictor process affect the current

response:

yi(tj) = β0(tj) +

p
∑

r=1

βr(tj)xi(tj−q−(r−1)) + ǫi(tj). (3)

Here, p denotes the number of time-points, i.e. the window width into the past, of the

predictor process that is considered to affect the response at the current time. The influ-

ence of past predictor values is modelled through p separate varying coefficient functions,

β1(·), . . . , βp(·). In order to include prediction of future values, a time lag of size q > 0 is

included in (3). The varying coefficient model is a special case of (3), in which q = 0 and

p = 1.

The formulation in (3) applies to longitudinal designs with equidistant time-points.

Nevertheless, the proposed estimation method will be shown in simulations to be easily

adapted to missing values. This property, coupled with a pre-binning step used to syn-

chronize the measurements across subjects, makes the proposed methodology applicable

to a broader class of longitudinal designs. In addition, to avoid singularities in (3), we

assume that predictor trajectories are not constant on any interval, as this would lead to

nonidentifiability of local regressions.

Model (3) is appealing, as the linear regression coefficient function extends beyond the

point-wise relationship that characterizes the usual varying coefficient model, to include

also data in a window prior to and up to time t. This characteristic is suitable for scenarios

in which the response at a fixed time t is likely to depend on the behaviour of the predictor

process not only at t but also at times before t.

Model (3) also has features reminiscent of time series models. In fact, related varying

coefficient models for time series have been developed and referred to as ‘functional coef-
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ficient autoregressive models’ (Chen & Tsay, 1993) and ‘functional coefficient regression

models’ (Cai et al., 2000), and these models also incorporate smooth coefficient functions

and regression modelling. While there are similarities, the data structures to which these

models pertain, and consequently their implementation and analysis, are quite different.

While the time series models deal with only one time series, models for longitudinal data,

considered here, focus on situations where one has repeated measurements for each of a

sample of subjects.

2. Estimation in the generalized varying coefficient model

under measurement errors

2.1 Model specifications

In many longitudinal studies, not only the response but also the predictor variables

are contaminated by measurement errors. Let yij, xij denote the underlying response and

predictor, and y′
ij, x′

ij denote the observed response and predictor, so that

y′
ij = yij + eyij ,

x′
ij = xij + exij,

where eyij and exij are independently and identically distributed, over i and j, zero mean

additive measurement errors with variances σ2
x and σ2

y , respectively. This results in ob-

served longitudinal data of the form

(tj , x
′
ij , y

′
ij), j = 1, . . . , Ti, i = 1, . . . , n.

The varying coefficient functions βj , j = 0, . . . , p are defined in the error-free model

yi(tj) = β0(tj) +

p
∑

r=1

βr(tj)xi(tj−q−(r−1)) + ǫi(tj), (4)

for j = q + p, . . . , T , but in the contaminated situation must be targeted based on the

observed contaminated response and predictor. The error ǫi(tj) is the realization of a zero-

mean stochastic process with covariance function δ(t′, t) = cov{ǫi(t
′), ǫi(t)}, which will be

denoted by δj = δ(tj , tj) when evaluated at the same time-points.
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The proposed estimation algorithm is an extension of the two-step estimation procedure

for longitudinal data that was developed by Fan & Zhang (2000). Noting that a different

linear regression between the observed response and the predictors applies for each time

point in a varying coefficient model, as given by (2), Fan & Zhang (2000) regress the

observed response on the observed predictor at a fixed time point tj to obtain the raw

estimates for the smooth coefficient functions β0(tj) and β1(tj) in a first step. In a second

step, the scatter-plots of the raw estimates for the coefficient functions are smoothed against

the time-points, for each component separately, to obtain the final smooth estimates for

the coefficient functions. This two-step estimation procedure is intuitively appealing and

easy to implement, involving only linear regression fits and one-dimensional smoothing

procedures.

2.2 Proposed estimates

The observed predictors and their error-free unobserved counterparts considered for

the response at a fixed time tj are x′
i(tj−q), . . . , x

′
i(tj−q−p+1) and xi(tj−q), . . . , xi(tj−q−p+1),

respectively. We collect the observed predictors and response into the matrix X ′
qpj =

(X ′
1,q,p,j, . . . , X

′
nj ,q,p,j)

T and the vector Y ′
j = (y′

1j, . . . , y
′
njj)

T, where X ′
i,q,p,j = {1, x′

i(tj−q), . . . ,

x′
i(tj−q−p+1)}T. Here, nj denotes the number of subjects observed at time tj and (tj−q, . . . ,

tj−q−p+1). Let Cj denote the set of corresponding subject indices. Auxiliary parameters

for the method are the lag value q and the window width p. Analogously let Xqpj and Yj

denote the unobserved error free data at time tj .

It follows from (4) that the response at time tj is modelled through the linear form

Yj = Xqpjβ(tj) + ǫ(tj), (5)

where β(tj) = {β0(tj), . . . , βp(tj)}T. The error process observed at time tj is denoted by

ǫ(tj). Since the responses observed at time tj come from different subjects, E{ǫ(tj)} = 0nj

and cov{ǫ(tj)} = δjInj
, where 0nj

denotes a vector of nj zeros and Inj
the identity matrix

of dimension nj × nj . Fan & Zhang (2000) obtain their raw estimates at the first step

by fitting the linear model in (5) at each time point. However, we do not observe Yj and

Xqpj, but only observe their noisy counterparts Y ′
j and X ′

qpj. The Fan & Zhang (2000) raw
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estimates (X ′T
qpjX

′
qpj)

−1X ′T
qpjY

′
j which correspond to a linear regression fit can easily handle

the additive measurement error in the response. However, because of the measurement

error in the predictors, these raw estimates in general will not target the β(tj) in (5). More

explicitly, consider the target of Fan & Zhang (2000) raw estimates for the simple case of

p = 1, which is

cov{y′
j, x

′(tj−q)}
var{x′(tj−q)}

=
β1jvar{x(tj−q)}
var{x′(tj−q)}

= β1j

(

var{x(tj−q)}
var{x(tj−q)} + var(exj−q)

)

= β1jζj,

where exj−q = x′(tj−q)− x(tj−q). As the values of ζj range between 0 and 1, Fan & Zhang

(2000) raw estimates potentially underestimate the target function β1(tj). The resulting

bias can become arbitrarily large as the error variance increases and ζj moves close to zero.

An alternative is therefore needed for the case of contaminated predictors. We note

that this problem can be equivalently viewed as finding an instrumental variable for the

problem at hand. We demonstrate that the following estimator (6) indeed provides a

construction of such an instrumental variable; compare with Carroll et al., (2004). Our

proposed estimator β(tj) is

bqp(tj) = (b0j , b1j , . . . , bpj)
T = (X ′T

qpj−pMj−p,jX
′
qpj)

−1X ′T
qpj−pMj−p,jY

′
j , (6)

for j = q + 2p, . . . , T . Here Mj−p,j denotes a nj−p × nj matrix for which the (a, b)th entry

equals 1 if the ath entry of Y ′
j−p and the bth entry of Y ′

j come from the same subject, and

equals 0 otherwise.

The estimator in (6) targets the correct value β(tj) since

E(X ′T
qpj−pMj−p,jY

′
j ) = E(XT

qpj−pMj−p,jYj),

E(X ′T
qpj−pMj−p,jX

′
qpj) = E(XT

qpj−pMj−p,jXqpj)

are not affected by the measurement error in the predictors. This is because X ′T
qpj−k and

X ′
qpj do not contain any predictors evaluated at the same time-points if k ≥ p. In most situ-

ations it is plausible to assume that cov{x(tj−q−(r−1)), x(tj−q−k−(r−1))}, r = 1, . . . , p, which

is known to be inversely proportional to the variance of bqp(tj) by standard least-squares

theory, becomes smaller as the jump k between the time-points increases. Therefore, the
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size of the jump is chosen as k = p in (6), the smallest acceptable value to deal with

measurement error, with the aim of keeping the variance of bqp(tj) as small as possible.

With the same argument, it is clear that the choice of no jump, for which the proposed raw

estimator reduces to the raw estimator of Fan & Zhang (2000), entails an estimator that

has smallest variance compared to other choices of k. However, as pointed out earlier, the

estimator with no jump is extremely vulnerable to measurement error in the predictors.

Thus, there is a trade-off between variance and robustness to measurement error in the

predictors. A recommended strategy is to compute both estimators in applications and

to choose the robust estimator with jumps if the estimator with no jump yields smaller

estimates in absolute value consistently for all the time-points, indicating presence of mea-

surement error. Otherwise, the estimator with no jump should be preferred since it has

smaller variance.

2.3 Asymptotic properties and finite sample inference

The following results are obtained assuming that the window width p and the lag

parameter q are known. Recall that Cj contains the subject indices of those subjects

observed at time tj and (tj−q, . . . , tj−q−p+1). Let nj−p,j denote the number of subjects in

Cj−p ∩ Cj . Further define

Xj = E(n−1
j−p,jX

′T
qpj−pMj−p,jX

′
qpj)

=

















1 E{x′(tj−q)} . . . E{x′(tj−q−p+1)}
E{x′(tj−q−p)} E{x′(tj−q−p)x

′(tj−q)} . . . E{x′(tj−q−p)x
′(tj−q−p+1)}

...
. . .

...

E{x′(tj−q−2p+1)} E{x′(tj−q)x
′(tj−q−2p+1)} . . . E{x′(tj−q−p+1)x

′(tj−q−2p+1)}

















,

and (Σj)s,s′ to be equal to































E{x′(tj−q−p−s+2)x
′(tj−q−p−s′+2)}ηqpj for 2 ≤ s, s′ ≤ p + 1

E{x′(tj−q−p−s′+2)}ηqpj for s = 1, 2 ≤ s′ ≤ p + 1

E{x′(tj−q−p−s+2)}ηqpj for s′ = 1, 2 ≤ s ≤ p + 1

ηqpj for s = s′ = 1































,

for all time-points tj such that j = q + 2p, . . . , T , where σ2
y , σ2

x and δj are defined in §2.1,
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and ηqpj = δj + σ2
y +

∑p
r=1 β2

r (tj)σ
2
x. Here, (Σj)s,s′ denotes the (s, s′)th element of Σj . The

following result gives the asymptotic distribution of the proposed estimates assuming the

case of missing completely at random.

Theorem 1. Under the technical conditions A1 − A3 given in the Appendix, it holds that

√
nj−p,j{bqp(tj) − β(tj)} → N (0p+1,X−1

j ΣjX−1
j )

in distribution as nj−p,j → ∞ for all time-points tj such that j = q + 2p, . . . , T .

The estimates given in (6) are not necessarily smooth, and a second smoothing step in

the estimation procedure may be beneficial in improving the efficiency of the estimates, as

well as imputing occasional missing values. The smoothing step would be carried out for

each of the r coefficients separately for r = 0, . . . , p,

β̂rqp(t) =
T

∑

j=1

w(tj, t)brj, (7)

where the brj are as in (6) and depend on q and p. The smoothing weights w(tj, t) can

be obtained from any linear smoothing technique, such as local polynomial smoothing,

as used by Fan & Zhang (2000), or spline smoothing, as used by Wu et al. (2000). In

the implementation of the smoothing step (7) by local linear smoothing, let h denote the

bandwidth and K(·) the weight function or equivalent kernel of the local polynomial fit

(Fan & Gijbels, 1996). For n0 = infj nj−p,j assume that n0 → ∞. The following result

establishes the asymptotic bias behaviour of the smoothed estimates β̂rqp, and in particular

asymptotic unbiasedness.

Theorem 2. Under the technical conditions A1 − A5 given in the Appendix, when h → 0,

Th → ∞, and n0h
4 → ∞ as T → ∞ and n0 → ∞, it holds that

β̂rqp(t) = βr(t) +
h2β(2)(t)

∫

K(x)x2dx

2
+ op(h

2).

Similarly to Fan & Zhang’s proposed bands for their smooth estimates, approximate

error bands indicating the size of standard errors can be constructed around the estimators
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in (7), based on standard error estimates of the bqp(tj). It follows from standard least

squares theory that

cov(brj , brj′|D) =































δ(tj, tj′)c
T
r,p(X

′T
qpj−pMj−p,jX

′
qpj)

−1X ′T
qpj−pMj−p,j

×Mj,j′Mj′,j′−pX
′
qpj′−p(X

′T
qpj′−pMj′−p,j′X

′
qpj′)

−1cr,p for j 6= j′,

(δj + σ2
y)c

T
r,p(X

′T
qpj−pMj−p,jX

′
qpj)

−1X ′T
qpj−p

×Mj−p,jMj,j−pX
′
qpj−p(X

′T
qpj−pMj−p,jX

′
qpj)

−1cr,p for j = j′,

(8)

where exj = X ′
qpj − Xqpj, D = {(X ′

qpj, Xqpj, tj), j = 1, . . . , T} and cr,p denotes a p-

dimensional unit vector with 1 at its rth entry.

An estimator for cov(brqpj, brqpj′|D) can be constructed based on (8) once estimators

for δ(tj, tj′) and δj + σ2
y are available. To obtain estimators for δ(tj , tj′) and δj + σ2

y , define

êqpj = (Inj
− Pqpj)Y

′
j to be the residuals from the proposed regression at time tj , where

Pqpj = X ′
qpj(X

′T
qpj−pMj−p,jX

′
qpj)

−1X ′T
qpj−pMj−p,j. If we assume that tr{(Ij − Pqpj)Mj,j′(Ij′ −

Pqpj′)} 6= 0 and nj > p, a set of estimators for δ(tj , tj′) and ∆j := δj + σ2
y is

δ̂(tj , tj′) = tr(êqpj ê
T
qpj′)/tr{(Ij − Pqpj)Mj,j′(Ij′ − Pqpj′)

T} (9)

∆̂j = êT
qpj êqpj/(nj − p), (10)

which use the fact that

tr{cov(êqpj, êqpj′|D)} =







δ(tj, tj′)tr{(Ij − Pqpj)Mj,j′(Ij′ − Pqpj′)} for j 6= j′

(δj + σ2
y)(nj − p) for j = j′.

Plugging (9) and (10) into (8) yields an estimator for cov(brj , brj′|D). Finally

var{β̂rqp(t)|D} =
T

∑

j=1

T
∑

j′=1

wrqp(tj , t)wrqp(tj′, t)cov(brqpj, brqpj′|D)

can be estimated by plugging in respective estimators of cov(brqpj, brqpj′|D). If we are

willing to assume that the smoothers we employ use fixed smoothing windows and ignore

bias, then we find from the above that ±2 error bars can be constructed for the final

smooth estimators as

β̂rqp(t) ± 2v̂ar{β̂rqp(t)|D}1/2. (11)
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2.4 Choosing window widths and lags

We view the choice of the window width p and lag q as a variable selection problem

as these quantities determine which predictors will be included in the proposed model.

Nevertheless, one difference from a standard variable selection situation is the restriction

that the final sequence of predictor times chosen as predictors has to be consecutive. For

example, reasonable choices of predictors for the response at time tj would not include

x(tj−1) and x(tj−3) as predictors, and not x(tj−2).

Therefore, we use a variation of the backward stepwise deletion technique of Fan et al.

(2003), for our implementation. We make use of a modified AIC and partial F -statistics.

We start by identifying an initial group of predictor times for modelling the response

at time tj , say {x(tj−q), . . . , x(tj−q−p+1)}. We then identify the least significant predictor

among the two candidates which are the smallest and largest time lags, namely x(tj−q) and

x(tj−q−p+1), according to their partial F -statistic values. This yields a reduced and a full

model, where the best model would be chosen by AIC = log{RSS/(nj,j−p−p)}+2p/nj,j−p.

Here RSS stands for the residual sum of squares of the fitted model at time tj ,

RSSqpj =

nj,j−p
∑

i=1

{

y′(tij) − b0j −
p

∑

r=1

brjx
′
i(tj−q−(r−1))

}2

and p, the number of predictors considered, would be equal to p in the full model of the

above example.

The F -statistics considered for the coefficient estimates in the linear model at times tj

are

Frqp =
{RSSqpj(R) − RSSqpj(F )}/1

RSSqpj(F )/(nj,j−p − p)
,

for r = 0, . . . , p− 1, where RSSqpj(F ) and RSSqpj(R) denote the residual sum of squares of

the full and reduced models, with or without x(tj−q−r), respectively. Assume for example

that the F -value of x(tj−q) is smaller than that of x(tj−q−p+1) in the above example. In

that case x(tj−q) is deleted from the full model containing all p predictors to form the

reduced model, and it is finally deleted from our set of considered predictors if the AIC

of the reduced model is smaller than that of the full model. If x(tj−q) is deleted from the

original set, we restart the deletion process, this time having {x(tj−q+1), . . . , x(tj−q−p+1)}
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as our initial set of predictors. We continue comparing the partial F -statistic values of the

coefficient estimators corresponding to x(tj−q+1) and x(tj−q−p+1). This backward stepwise

deletion is repeated until we cannot delete any further predictors. The lag, q∗, and the

window width, p∗, of the final model are the chosen values for these parameters.

3. Simulation study

The goal of this simulation study is to assess the effectiveness of the proposed procedure

for dealing with measurement error through the jump in the time-points. Hence, we

compare the proposed estimator to an alternative estimator which can be derived from

the Fan & Zhang (2000) raw estimates, with the measurement error ignored. We also

explore the performance of the backward stepwise deletion technique proposed in §2.4 for

the choice of window width and lag.

The data are generated from the model

yi(tj) = β0(tj) + β1(tj)xi(tj−1) + β2(tj)xi(tj−2) + ǫi(tj),

for j = 1, . . . , 20 and i = 1, . . . , 64, with lag q = 1 and window width p = 2. The time-

points t1, . . . , t20 are are chosen to be equidistant between 0.01 and 1, and the coefficient

functions are β0(t) = 250 + 200 sin(3πt), β1(t) = −200 − 180t and β2(t) = 50 + 150t2.

Predictor and error processes are both generated from multivariate normal distributions

with decaying covariance structures,

cov{xi(tj), xi(tj′)} = 6e−8|tj−tj′ |
2

, cov{ǫi(tj), ǫi(tj′)} = 0.15e−0.3|tj−tj′ |,

and means 20 + 180t2j and 0, respectively. The predictor and response are observed with

additive measurement error, and are denoted by

x′
i(tj) = xi(tj) + exij , y′

i(tj) = yi(tj) + eyij .

The measurement errors eyij and exij are simulated to be independently and identically dis-

tributed, both over i and j, normal random variables with means 0 and standard deviations

0.15 and 0.1, respectively.

The number of repeated measurements for each subject is generated randomly between

1 and 20. Thus, potentially unequal numbers of observations are taken on each subject,
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and on average 30% of the data are missing. This yields 14 repetitions per subject on

average, and roughly 45 data-points observed at a given time tj .

To explore the performance of the backward stepwise deletion technique in §2.4 for the

choice of window widths and lags, we apply the method to variable selection from the initial

set of predictors {x(tj−1), x(tj−2), x(tj−3)} at each time point. We ran 1000 simulations to

estimate the deletion frequencies of these three predictors and these are given in Fig. 1 (c).

The simulations indicate that we should keep two time-points in the predictor model, but

not three, which is in line with the simulation model. The downward trend in the deletion

frequency of the second predictor is also as expected, since β2(t) increases substantially as

t moves from 0 to 1.

To assess the effectiveness of the estimation strategy as implemented in estimator (6),

we compare the two algorithms, one with the jump in the time-points as in (6), and the

other directly derived from the Fan & Zhang (2000) raw estimates, with the additive

measurement error in the predictor ignored. The means of resulting estimates and their

±2 error bars over 1000 Monte Carlo runs are shown in Fig. 2. The estimates that ignore

the measurement error, dash-dotted, clearly deviate considerably further from the target

function: the ±2 error bars for the two slope estimates do not contain the true coefficient

functions, solid curve. The proposed estimators (6), dotted, which are reasonably close to

the target functions have wider error bars, as expected, since their variance is larger than

that of the unadjusted estimates.

Other measures of the performance of the fits obtained by the two estimates are the

mean absolute deviation error and the weighted average squared error, defined as

MADE =

(

3
∑

j

1

)−1 2
∑

r=0

∑

j

|βr(tj) − β̂r(tj)|
range(βr)

, WASE =

(

3
∑

j

1

)−1 2
∑

r=0

∑

j

{βr(tj) − β̂r(tj)}2

range2(βr)
,

where range(βr) is the range of the function βr(t), and the sums over j are taken over

j = q + 2p, . . . , T . We also consider unweighted average squared error, UASE which is

defined in the same way as WASE, but without any weights in the denominator. Box-plots

of the ratios of the values of MADE, WASE and UASE of the proposed method over the

unadjusted estimator from 1000 Monte Carlo runs are given in Fig. 1 (a). The plots
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indicate that the proposed estimators indeed handle measurement error in the predictors

much better than do the unadjusted estimators. We have also compared the two estimators

under no measurement error and the respective box plots of MADE, WASE and UASE ratios

are given in Fig. 1 (b). In this case the estimates ignoring the measurement error perform

better in this case than the proposed robust estimates, as expected, because of their smaller

variance.

4. Application to protein data

A motivation for this study was the investigation of longitudinal relationships between

the levels of positive acute phase proteins such as C-reactive protein, CRP, and negative

acute phase proteins such as transferrin, TRF; see Kaysen et al. (2001) for background in

the context of haemodialysis. In the Kaysen et al. study, the levels of acute phase proteins

were recorded for 64 hemodialysis patients. The number of repeated measurements for

the 64 patients ranged from 9 to 39 per patient, and the visits were on average a month

apart. Of particular interest are relationships between negative and positive acute phase

proteins. We aim at predicting transferrin from previous C-reactive protein levels and

consider models that regress transferrin levels at time j on past values of C-reactive protein

levels, recorded possibly at times tj−1, tj−2 and tj−3. Here the unit of time is one month.

Accordingly, we start with the initial model

TRFi(tj) = β0(tj) + β1(tj)CRPi(tj−1) + β2(tj)CRPi(tj−2) + β3(tj)CRPi(tj−3) + ǫi(tj),

for which q = 1 and p = 3, and then apply the proposed backward variable selection

technique to choose the final predictors, which corresponds to choosing q and p. The

predictor CRP(tj−2) turns out to be the only one that is significant for more than half of

the time-points considered. Thus we eliminate CRP(tj−1) and CRP(tj−3) from the initial

model, and choose the one with q = 2 and p = 1, leading to the model

TRFi(tj) = β0(tj) + β1(tj)CRPi(tj−2) + ǫi(tj).

The proposed estimates for coefficient functions β0(t) and β1(t) obtained for this model

are illustrated in Fig. 3, including the corresponding unadjusted estimates that ignore

measurement error. The ±2 error bars (11) for the coefficient functions are also shown.
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The coefficient functions obtained from the proposed and the unadjusted estimates

clearly differ. The proposed method leads to more pronounced coefficient functions for

C-reactive protein, consistently for all time-points. This indicates that measurement error

is indeed present in the predictors, which is also consistent with the underlying biology,

and that it is masking the true predictive effects of C-reactive protein. The error bands

indicate a degree of significance of the coefficient function β1 at t ≏ 600 days, if we ignore

the fact that the bars are pointwise and approximate. In contrast to the previous analysis

of Kaysen et al. (2001), in which only lags of one month were considered, the proposed

model indicates that lags of two months are particularly relevant. This points to lingering

effects of C-reactive protein levels on negative acute phase proteins such as transferrin that

extend well beyond one month.
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Appendix

Technical details

We introduce some technical conditions. For a fixed time-point tj such that q + 2p ≤
j ≤ T , we impose the following conditions.

Condition A1. The matrices X̃j = (n−1
j−p,jX

′T
qpj−pMj−p,jX

′
qpj) and Xj = E(n−1

j−p,jX
′T
qpj−pMj−p,jX

′
qpj)

are nonsingular.

Condition A2. The variances of x′(tj−q−s), x′(tj−q−p−s′), {x′(tj−q−s)x
′(tj−q−p−s′)} and the

expected values of x′(tj−q−p−s′), {x′(tj−q−p−s′)x
′(tj−q−p−s)} are finite for all s, s′ =

0, . . . , p − 1.

Condition A3. It holds that E{ǫ2
i (tj)}, σ2

y and σ2
x are finite.

Condition A4. Conditions and bounds in A1, A2 and A3 hold uniformly in j. For condition

A1, this implies that infj det|X̃j | > 0 and infj det|Xj| > 0.

13



Condition A5. The functions βr are twice continuously differentiable, and the kernel K is

a continuous density function with finite second moment.

Proof of Theorem 1. Define the vectors ǫj = (ǫ1(tj), . . . , ǫnj
(tj))

T, eyj = (ey1j , . . . , eynjj)
T

and the matrices

exj = X ′
qpj −Xqpj =











0 ex,1,j−q . . . ex,1,j−q−p+1

...
...

...

0 ex,nj ,j−q . . . ex,nj ,j−q−p+1











, Zj = (n−1
j−p,jX

′T
qpj−pMj−p,jX

′
qpj).

Then

bqp(tj) = (X ′T
qpj−pMj−p,jX

′
qpj)

−1X ′T
qpj−pMj−p,jY

′
j

= (X ′T
qpj−pMj−p,jX

′
qpj)

−1X ′T
qpj−pMj−p,jX

′
qpjβ(tj)

+(X ′T
qpj−pMj−p,jX

′
qpj)

−1X ′T
qpj−pMj−p,j{Y ′

j − X ′
qpjβ(tj)}

= β(tj) + (X ′T
qpj−pMj−p,jX

′
qpj)

−1X ′T
qpj−pMj−p,j{ǫj + eyj − exjβ(tj)}

= β(tj) + (n−1
j−p,jX

′T
qpj−pMj−p,jX

′
qpj)

−1

×

















n−1
j−p,j

∑

i∈Cj−p,j
{ǫi(tj) + eyij −

∑p
r=1 ex,i,j−q−(r−1)βr(tj)}

n−1
j−p,j

∑

i∈Cj−p,j
x′

i(tj−q−p){ǫi(tj) + eyij −
∑p

r=1 ex,i,j−q−(r−1)βr(tj)}
...

n−1
j−p,j

∑

i∈Cj−p,j
x′

i(tj−q−2p+1){ǫi(tj) + eyij −
∑p

r=1 ex,i,j−q−(r−1)βr(tj)}

















≡ β(tj) + (Zj)
−1
(p+1)×(p+1)(Rj)(p+1)×1,

where Cj−p,j is the set of subject indices such that Cj−p,j = Cj−p∩Cj , and E(Rj) = 0p+1 ≡
R. It holds that

Z−1
j Rj = X−1

j (Rj − R) − X−1
j (Zj − Xj)Z

−1
j Rj + X−1

j R

= X−1
j (Rj − 0p+1) −X−1

j (Zj −Xj)Z
−1
j Rj ,

where Xj is as defined before Theorem 1. Therefore,

√
nj−p,j(Z

−1
j Rj) = X−1

j

√
nj−p,j(Rj − 0p+1) −X−1

j

√
nj−p,j(Zj −Xj)Z

−1
j Rj . (A1)

If we use (A1) and if we can show that

√
nj−p,j(Rj − 0p+1) → N (0p+1, Σj), (A2)
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in distribution,
√

nj−p,j(Zj − Xj) = Op(1)(1p+11
T
p+1), (A3)

Z−1
j → X−1

j , (A4)

in probability where 1p+1 denotes a vector of p + 1 ones, then Theorem 1 follows. Since

Zj = n−1
j−p,j

∑

i∈Cj−p,j

















1 x′
i(tj−q) . . . x′

i(tj−q−p+1)

x′
i(tj−q−p) x′

i(tj−q−p)x
′
i(tj−q) . . . x′

i(tj−q−p)x
′
i(tj−q−p+1)

...
. . .

...

x′
i(tj−q−2p+1) x′

i(tj−q)x
′
i(tj−q−2p+1) . . . x′

i(tj−q−p+1)x
′
i(tj−q−2p+1)

















,

by condition A2, E(Zj−Xj)s,s′ = 0 and var(Zj−Xj)s,s′ = Op(n
−1
j−p,j), for s, s′ = 1, . . . , p+1,

(A3) follows. It follows from the Law of Large Numbers that Zj → Xj, in probability. Now

consider

det(Zj) =

(p+1)!
∑

ℓ=1

(−1)sign(τ)(Zj)1τℓ(1) . . . (Zj)p+1,τℓ(p+1),

where the sum is taken over all permutations τℓ of (1, . . . , p + 1), and sign(τ) equals +1 or

−1, depending on whether τ can be written as the product of an even or odd number of

transpositions. Let Z−ss′

j denote the matrix obtained after deleting the sth row and s′th

column of Zj. Then the cofactor of (Zj)ss′ is defined by (−1)s+s′ times the determinant of

Z−ss′

j and thus equals (−1)s+s′
∑p!

ℓ=1(−1)sign(τ)(Z−ss′

j )1τℓ(1) . . . (Z−ss′

j )p,τℓ(p). Therefore, the

(s, s′)th element of Z−1
j is equal to

(Z−1
j )ss′ =

(−1)s+s′
∑p!

ℓ=1(−1)sign(τ)(Z−ss′

j )1τℓ(1) . . . (Z−ss′

j )p,τℓ(p)
∑(p+1)!

ℓ=1 (−1)sign(τ)(Zj)1τℓ(1) . . . (Zj)p+1,τℓ(p+1)

for s, s′ = 1, . . . , p + 1. Since Zj → Xj, in probability,

(Z−1
j )ss′ →

(−1)s+s′
∑p!

ℓ=1(−1)sign(τ)(X−ss′

j )1τℓ(1) . . . (X−ss′

j )p,τℓ(p)
∑(p+1)!

ℓ=1 (−1)sign(τ)(Xj)1τℓ(1) . . . (Xj)p+1,τℓ(p+1)

= (X−1
j )ss′,

in probability and (A4) follows.

Result (A2) follows by the Central Limit Theorem, given conditions A2 and A3, where

Σj is as defined before Theorem 1. Theorem 1 then follows from (A1).

Proof of Theorem 2. We fix the index r and suppress it in the following. Consider

|β̂(t) − β(t)| =

∣

∣

∣

∣

T
∑

j=1

w(tj, t)bqp(tj) − β(t)

∣

∣

∣

∣

≤
∣

∣

∣

∣

T
∑

j=1

w(tj, t)bqp(tj) −
T

∑

j=1

w(tj, t)β(tj)

∣

∣

∣

∣

+

∣

∣

∣

∣

T
∑

j=1

w(tj, t)β(tj) − β(t)

∣

∣

∣

∣

= A + B ,
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say. From the Cauchy-Schwarz inequality, A can be bounded as follows:

A =

∣

∣

∣

∣

T
∑

j=1

w(tj, t){bqp(tj) − β(tj)}
∣

∣

∣

∣

≤
T

∑

j=1

|w(tj, t)|I{w(tj ,t)6=0} sup
k

|bqp(tk) − β(tk)|

= Op(n
−1/2
0 )

T
∑

j=1

|w(tj, t)|I{w(tj ,t)6=0} ≤ Op(n
−1/2
0 )

{ T
∑

j=1

w2(tj, t)

}1/2

(Th)1/2 = Op(n
−1/2
0 ).

Here, I{w(tj ,t)6=0} denotes the indicator function that w(tj, t) is not zero and we have used
∑

j w2(tj , t) = O{(Th)−1} and supk |bqp(tk) − β(tk)| = Op(n
−1/2
0 ), which follows from con-

dition A4 and arguments in the proof of Theorem 1. Since n0h
4 → ∞, we conclude

that A= op(h
2). From well-known facts about local linear fits for equidistant designs,

B= h2β(2)(t)
∫

K(x)x2dx/2 + o(h2) and Theorem 2 follows.
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Figure 1: (a) Box-plots for the ratios of error measures for proposed estimates over un-

adjusted estimates, for MADE, WASE and UASE. Quotients smaller than one show that

the proposed method is superior in the presence of measurement error. The box plots

are based on ratios obtained from 1000 Monte Carlo runs. (b) Box-plots for the ratios of

MADE, WASE and UASE for the case of no measurement error. (c) Deletion frequencies of

the predictors x(tj−1), dotted, x(tj−2), dashed, and x(tj−3), solid, from §3, based on 1000

simulation runs.
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Figure 2: The cross-sectional mean curves of the proposed estimates with jump in the

time-points, dotted, and the corresponding unadjusted estimates, dash-dotted, along with

their ±2 error bars for the true coefficient functions, for (a) β0(t), (b) β1(t), (c) β2(t).
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Figure 3: Smooth fits, solid, fitted to the proposed estimates, dots, and to the esti-

mates that do not adjust for measurement error, dash-dotted, along with proposed ±2

error bars, dotted, for the true coefficient functions (a) β0(t) and (b) β1(t) in the model

TRFi(tj) = β0(tj) + β1(tj)CRPi(tj−2) + ǫi(tj). The crossvalidation bandwidth choices for

local polynomial fits are 80 and 70 for β0 and β1, respectively.
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