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Functional Varying Coefficient Models
for Longitudinal Data

Damla ŞENTÜRK and Hans-Georg MÜLLER

The proposed functional varying coefficient model provides a versatile and flexible analysis tool for relating longitudinal responses to
longitudinal predictors. Specifically, this approach provides a novel representation of varying coefficient functions through suitable auto
and cross-covariances of the underlying stochastic processes, which is particularly advantageous for sparse and irregular designs, as often
encountered in longitudinal studies. Existing methodology for varying coefficient models is not adapted to such data. The proposed approach
extends the customary varying coefficient models to a more general setting, in which not only current but also recent past values of the
predictor time course may have an impact on the current value of the response time course. The influence of past predictor values is modeled
by a smooth history index function, while the effects on the response are described by smooth varying coefficient functions. The resulting
estimators for varying coefficient and history index functions are shown to be asymptotically consistent for sparse designs. In addition,
prediction of unobserved response trajectories from sparse measurements on a predictor trajectory is obtained, along with asymptotic
pointwise confidence bands. The proposed methods perform well in simulations, especially when compared with commonly used local
polynomial smoothing methods for varying coefficient models, and are illustrated with longitudinal primary biliary liver cirrhosis data. The
data application and detailed assumptions and proofs can be found in online Supplemental Material.

KEY WORDS: Functional data analysis; History index; Local least squares; Repeated measurements; Smoothing; Sparse design.

1. INTRODUCTION

In this paper we propose two innovations for varying coef-
ficient models (Cleveland, Grosse, and Shyu 1991; Hastie and
Tibshirani 1993) in longitudinal studies. First, a new representa-
tion for varying coefficient functions is introduced that relates
a response process to a predictor process. This representation
is particularly advantageous when one has only noisy and in-
termittent measurements available for the trajectories of these
processes for a sample of subjects, a common situation in lon-
gitudinal studies. Second, we extend the standard framework
of varying coefficient models, where the current value of a re-
sponse process is modeled in dependence on the current value
of a predictor process, by including the effect of recent past
values of the predictor through a smooth history index func-
tion. While in functional linear models with both predictors
and responses as random functions (Ramsay and Dalzell 1991;
Yao, Müller, and Wang 2005b), it is assumed that past, present,
and future values of the predictor process influence current re-
sponse, only the current value of the predictor process affects
the current response in varying coefficient models. The assump-
tion that the recent past of the predictor process (but not the
future or the distant past) has an affect on current responses is
plausible in many applications where responses are driven by
recent trends in predictors.

The historical functional linear model of Malfait and Ram-
say (2003), the functional regression evolution of Müller and
Zhang (2005) and the generalized varying coefficient model of
Şentürk and Müller (2008) are other models intermediate be-
tween functional and varying coefficient linear models, as these
models also include the effect of past values of the predictor
process on current response. In contrast to these approaches, the
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proposed functional varying coefficient model provides a parsi-
monious and intuitive balance by introducing a history index,
which serves to convey the effects of the recent past of the pre-
dictor on current response. In this model, the current value of
the response process Y(t) at time t depends on the recent history
of the predictor process X in a sliding window of length �,

E{Y(t)|X(t)} = β0(t) + β1(t)
∫ �

0
γ (u)X(t − u)du (1)

for t ∈ [�,T] with a suitable T > 0. The history index function
γ (·) in (1) defines the history index factor at β1(t), by quantify-
ing the influence of the recent history of the predictor values on
the response. The varying coefficient function β1(·) represents
the magnitude of this influence as a function of time. Functions
γ , β1 and the intercept function β0 are assumed to be smooth.
For identifiability, we assume that γ (·) is normalized by requir-
ing that

∫ �

0 γ 2(u)du = 1 and that γ (0) > 0 for identifiability,
which is no real restriction, as {−β1(t)}{−γ (u)} = β1(t)γ (u).

An assumption implicit in this model is that the history in-
dex function γ itself does not change over time, leading to a
clear separation of time effects encoded in β1 and history ef-
fects encoded in γ , thus decomposing the functional regression
of Y on X into these two easily interpretable one-dimensional
component functions. We propose an estimation algorithm for
functional varying coefficient models that is geared towards ad-
dressing a commonly encountered challenge for longitudinal
data, namely the irregularity of the subject-specific measure-
ment times and the varying number of measurements available
for each subject. We build on previous approaches of functional
analysis that address the problem of sparse designs and noisy
measurements (James, Hastie, and Sugar 2000; Yao, Müller,
and Wang 2005a, 2005b).

Once γ (·) has been estimated, (1) reduces to a varying coeffi-
cient model. Note that even if γ (·) is assumed to be known, ob-
taining the predictors of the reduced varying coefficient model,
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that is,
∫ �

0 γ (u)X(t − u)du, may not be straightforward, due to
the sparsity of the measurements for the predictor process in the
history window [t − �, t], which renders numerical integration
infeasible. Hence, we use functional estimation tools to develop
a novel estimation procedure for this second step, which also
turn out to be of value for the common version of varying coef-
ficient models relating Y(t) to X(t), especially when the design
is sparse. A review of available estimation methods is provided
by Fan and Zhang (2008). These methods include polynomial
spline (Huang, Wu, and Zhou 2004) and smoothing spline (Chi-
ang, Rice, and Wu 2001) approaches, as well as local polyno-
mial smoothing (Fan and Zhang 2000; Wu and Chiang 2000).

In contrast to our proposal, most of these methods face se-
vere challenges for sparse designs. While there are well estab-
lished results for incorporating within subject correlation to in-
crease efficiency for parametric models, much less work ex-
ists for nonparametric approaches (Lin and Carroll 2001; Qu
and Li 2006; Fan, Huang, and Li 2007). In these approaches,
the varying coefficient estimation is usually based on local
polynomial smoothing, and hence may suffer in the case of
sparse designs. In Liang, Wu, and Carroll (2003), an inter-
esting mixed effects varying coefficient model coupled with a
finite-dimensional mixed effects spline model for the predictors
is proposed, addressing both the dependency in the predictor
process and adjusting for measurement errors in a flexible para-
metric approach, while our approach is nonparametric and takes
full advantage of the functional nature of the variables. The key
for our functional approach is to target the covariance struc-
ture of X and cross-covariance structure of X and Y ; estimates
of these covariance surfaces behave well even under sparse de-
signs.

In Section 2, our estimation procedures are introduced, ini-
tially within the framework of established varying coefficient
models. The proposed estimates for fitting functional varying
coefficient models with history effect are described in Section 3.
Results on consistency and inference are also presented in Sec-
tions 2 and 3, respectively, and numerical results can be found
in Section 4. Details describing an application to longitudinal
primary biliary liver cirrhosis data are provided in online Sup-
plemental Material, where one can also find a technical Appen-
dix with assumptions and proofs of the asymptotic results.

2. FUNCTIONAL APPROACH TO VARYING
COEFFICIENT MODELS

2.1 Data and Model

The observed data consist of square integrable random pre-
dictor and response trajectories (Xi,Yi), i = 1, . . . ,n, which are
realizations of the smooth random processes (X,Y), defined
on a finite and closed interval domain [0,T]. The smooth ran-
dom processes have unknown smooth mean functions μX(t) =
EX(t),μY(t) = EY(t), and (auto) covariance functions GXX(s,
t) = cov{X(s),X(t)},GYY (s, t) = cov{Y(s),Y(t)}, for s, t ∈ [0,

T]. Under mild conditions, one has orthogonal expansions for
the covariances in terms of eigenfunctions φm and ψk with non-
increasing eigenvalues ρm and λk,

GXX(s, t) =
∑

m

ρmφm(s)φm(t),

GYY(s, t) =
∑

k

λkψk(s)ψk(t) for s, t ∈ [0,T].

We now describe what we mean by sparse (or longitudinal) de-
signs.

(SD) For the ith subject one has a random number Ni

of repeated measurements Uij = Xi(Tij) + εij,Vij = Yi(Tij) +
εij, j = 1, . . . ,Ni, obtained at iid random measurement times
Ti1, . . . ,TiNi , where εij, εij are zero mean finite variance iid
errors. The Ni are assumed to be iid and Ni, Tij, εij, εij,Xi,Yi

are assumed to be mutually independent. The observed data
are then Uij = μX(Tij) + ∑

m ξimφm(Tij) + εij,Vij = μY(Tij) +∑
k ζikψk(Tij) + εij, where ξim, ζik are sequences of uncorre-

lated mean zero functional principal components with second
moments equal to the eigenvalues ρm and λk, respectively.

The representations in (SD) follow from the Karhunen–
Loève expansion (see, e.g., Ash and Gardner 1975). The esti-
mators proposed below can be easily modified to cover the case
where measurements for predictor and response processes are
available at different time points Tij and Sij, respectively. One
common reason for differences in measurement times between
X and Y are missing values.

Now consider the standard longitudinal varying coefficient
model

E{Y(t)|X(t)} = β0(t) + β1(t)X(t), (2)

where it is assumed that the varying coefficient functions β0, β1
are smooth. With centralized predictor and response trajecto-
ries, that is, YC(t) = Y(t) − μY(t) and XC(t) = X(t) − μX(t),
model (2) can be rewritten as E{YC(t)|X(t)} = β1(t)XC(t) with
β0(t) = μY(t) − β1(t)μX(t). Fixing t = t0, utilizing the lin-
ear relationship between X(t) and Y(t) at t = t0 and using the
smoothness of β1, a standard method for fitting varying coeffi-
cient models (Fan and Zhang 2008) is to minimize

∑
i
∑

j(V
C
ij −

θUC
ij )

2Kh(Tij − t0) with respect to θ , obtaining β̂1(t0) = θ̂ .

This estimate involves a kernel function K, chosen as a sym-
metric probability density, and a bandwidth h, where Kh(·) =
K(·/h)/h. The minimization given above corresponds to utiliz-
ing local constant fits. Another common form of the estima-
tor based on local linear fits is given in more detail in Appen-
dix A.3. This approach to fitting varying coefficient models for
longitudinal data does not take full advantage of the functional
nature of the underlying data and may be biased or inefficient
in the case of sparse and noise-corrupted measurements Uij,Vij

that are encountered in many longitudinal studies. Our func-
tional methods are addressing such data and therefore of inter-
est for the classical varying coefficient model.

2.2 Functional Approach

Our starting point is the following population least squares
representation,

β1(t) = argmin
θ

{
E(YC(t) − θXC(t))2}

= cov{X(t),Y(t)}
var{X(t)} = GXY(t, t)

GXX(t, t)
, with

(3)
GXY(s, t) = cov{X(s),Y(t)}

=
∞∑

m=1

∞∑
k=1

E(ξmζk)φm(s)ψk(t),
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the cross-covariance function between X and Y .
In a first step we target the mean functions for the predic-

tor and response processes by smoothing the aggregated data
(Tij,Uij) and (Tij,Vij), i = 1, . . . ,n, j = 1, . . . ,Ni, respectively,
with local linear fitting, say. After obtaining the estimated
mean functions μ̂X and μ̂Y , we compute the raw covariances
of X and the raw cross-covariances between X and Y , based
on all observations from the same subject by GX,i(Tij,Ti�) =
{Uij − μ̂X(Tij)}{Ui� − μ̂X(Ti�)} and GXY,i(Tij,Ti�) = {Vij −
μ̂Y(Tij)}{Ui� − μ̂X(Ti�)}, i = 1, . . . ,n, j, � = 1, . . . ,Ni, respec-
tively. The raw covariances and cross-covariances are then fed
into a two-dimensional local least squares smoothing algorithm
to arrive at the final estimates ĜXY and ĜXX , where special care
needs to be taken around the diagonal; explicit forms of the
covariance surface estimators are given in Appendix A.3 (com-
pare also Yao, Müller, and Wang 2005a, 2005b).

This covariance estimation step eliminates the effect of the
noise contamination of the observations, which is especially a
problem for the predictor processes; and through pooling of the
data across subjects it overcomes the problems associated with
the sparseness of the design. In a subsequent step, we obtain the
least squares estimates for the varying coefficient functions (3)
as

β̂1(t) = ĜXY(t, t)/ĜXX(t, t),
(4)

β̂0(t) = μ̂Y(t) − β̂1(t)μ̂X(t).

This novel estimation procedure makes it possible to handle the
noise contamination in both predictor and response processes,
as well as the sparsity of the longitudinal data, and also to incor-
porate additional information that is inherent in the underlying
covariance structure in the estimation step.

2.3 Uniform Consistency and Prediction

For details about the assumptions needed for the following
results, see Appendix A.1. The proofs are provided in Appen-
dix A.2 (see online Supplemental Material).

Theorem 1. Under Assumptions (A) in the Appendix, the
varying coefficient function estimators (4) for the longitudinal
varying coefficient model (2) satisfy

sup
t∈[0,T]

|β̂r(t)−βr(t)| = Op

{
1√
n

(
1

h1h2
+ 1

h2
X

)}
, for r = 0,1.

Here bandwidths h1,h2 are used in the two-dimensional
smoothing step of the raw covariances to obtain the cross-
covariance function ĜXY and hX is used in the two-dimensional
smoothing step to obtain the covariance surface ĜXX , as de-
scribed explicitly in Appendix A.3. We note that this result
holds under possibly very sparse conditions with, say, only two
longitudinal measurements available per subject.

Aiming to predict the response trajectory Y∗ for a new sub-
ject from a sparse predictor trajectory X∗, we find from (2),

E{Y∗(t)|X∗(t)} = μY(t) + β1(t)
∞∑

m=1

ξ∗
mφm(t), (5)

where ξ∗
m = ∫ T

0 {X∗(t) − μX(t)}φm(t)dt is the mth functional
principal component of X∗. The quantities μY(t), β1(t) and
φm(t) in (5) can be estimated from the data. For estimation of

φm(t) and ρm, a nonparametric functional principal component
analysis step is employed on the estimated auto-covariance sur-
face ĜXX ; details can be found in Appendix A.3. Following Yao,
Müller, and Wang (2005a), we invoke Gaussian assumptions for
the estimation of ξ∗

m for the case of sparse designs.
For the jth measurement X∗

j = X∗(T∗
j ) of the predictor func-

tion X∗ at time T∗
j , j = 1, . . . ,N∗, for a random number of total

measurements N∗, and the observed data U∗
j = X∗

j + ε∗
j , in ac-

cordance with the data model (SD) in Section 2.1, assume that
the functional principal components ξ∗

m and the measurement
errors ε∗

j are jointly Gaussian. Then the best prediction of the
scores ξ∗

m, given the observations U∗ = (U∗
1 , . . . ,U∗

N∗) and their
number N∗ and locations T∗ = (T∗

1 , . . . ,T∗
N∗)T, is

ξ̃∗
m = ρmφ∗T

m �−1
U∗ (U∗ − μ∗

X). (6)

In (6), ξ̃∗
m = ρmφ∗T

m �−1
U∗ (U∗−μ∗

X). Here, μ∗
X = {μX(T∗

1 ), . . . ,

μX(TN∗)}T, φ∗
m = {φm(T∗

1 ), . . . , φm(T∗
N)}T, and �U∗ = cov(U∗|

N∗,T∗), with (j, �)th entry (�U∗)j,� = GXX(Tij,Ti�) + σ 2
Xδj�

with δj� = 1 if j = � and 0 if j �= �. To estimate the princi-
pal components ξ∗

m, we substitute into (6) the estimates of μ∗
X ,

ρm and φ∗
m that are based on the entire data, leading to ξ̂∗

m =
ρ̂mφ̂∗T

m �̂−1
U∗ (U∗ − μ̂∗

X), where (�̂U∗)j,� = ĜXX(Tij,Ti�)+ σ̂ 2
Xδj�.

For more details on obtaining σ̂ 2
X , see Appendix A.3. The pre-

dicted trajectories are

Ŷ∗
M(t) = μ̂Y(t) + β̂1(t)

M∑
m=1

ξ̂∗
mφ̂m(t). (7)

Theorem 2. Under Assumptions (A), (C1), (C2), (C3a) in
the Appendix, given N∗ and T∗, for all t ∈ [0,T], predicted re-
sponse trajectories in the varying coefficient model (2) satisfy

lim
n→∞ Ŷ∗

M(t) = Ỹ∗(t) in probability,

for the target trajectory Ỹ∗(t) = μY(t) + β1(t)
∑∞

m=1 ξ̃∗
mφm(t),

as the number M of included eigencomponents satisfies M =
M(n) → ∞ as n → ∞.

The number M of included eigenfunctions can be chosen
by various criteria, including the Akaike information criterion
(AIC), with more details given in Appendix A.3, or fraction of
variance explained.

2.4 Asymptotic Pointwise Confidence Bands for
Response Trajectories

We next construct asymptotic confidence bands for pre-
dicted response trajectories Y∗ (7), given U∗,N∗, and T∗. With
ξM∗ = (ξ∗

1 , . . . , ξ∗
M)T, ξ̃M∗ = (ξ̃∗

1, . . . , ξ̃
∗
M)T, where ξ̃∗

m is as de-
fined in (6), and the M ×N∗ matrix H = cov(ξM∗ ,U∗|N∗,T∗) =
(ρ1φ

∗
1 , . . . , ρMφ∗

M)T, we observe that ξ̃M∗ = H�−1
U∗ (U∗ − μ∗

X)

and cov(ξ̃M∗ |N∗,T∗) = cov(ξ̃M∗ , ξM∗ |N∗,T∗) = H�−1
U∗ HT.

Hence, cov(ξ̃M∗ −ξM∗ |N∗,T∗) = cov(ξM∗ |N∗,T∗)−cov(ξ̃M∗ |N∗,
T∗) = D − H�−1

U∗ HT ≡ �M , where D = diag(ρ1, . . . , ρM).
Therefore, under Gaussian assumptions, given N∗ and T∗, one
has ξ̃M∗ − ξM∗ ∼ N(0,�M).

Let �̂M = D̂ − Ĥ�̂−1
X̃∗ ĤT, where D̂ = diag(ρ̂1, . . . , ρ̂M)

and Ĥ = (ρ̂1φ̂
∗
1, . . . , ρ̂Mφ̂∗

M)T, and set φtM = {β1(t)φ1(t), . . . ,
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Şentürk and Müller: Functional Varying Coefficient Models 1259

β1(t)φM(t)}T for t ∈ [0,T], with φ̂tM as the corresponding esti-
mate. The following result facilitates the construction of point-
wise confidence intervals for the mean response E{Y∗(t)|X∗(t)}
at predictor level X∗.

Theorem 3. Under Assumptions (A), (C1), (C2), (C3a),
(C4a) in the Appendix, given N∗ and T∗, for all t ∈ [0,T],
x ∈ R, predicted response trajectories in the varying coefficient
model (2) satisfy

lim
n→∞ P

[
Ŷ∗

M(t) − E{Y∗(t)|X∗(t)}
ω̂tM

≤ x

]
= �(x),

where ωtM = φT
tM�MφtM , ω̂tM = φ̂T

tM�̂Mφ̂tM and �(·) denotes
the Gaussian cdf and M(n) → ∞ as n → ∞.

It follows from Theorem 3 that, ignoring truncation bias re-
sulting from truncation at M in Ŷ∗

M , the (1 − α)100% asymp-
totic pointwise confidence interval for E{Y∗(t)|X∗(t)} is given
by Ŷ∗

M(t) ± �(1 − α/2)
√

ω̂tM .

3. FITTING OF THE MODEL WITH HISTORY INDEX

To study functional varying coefficient models with history
index, we observe that at each fixed time point t, the model
in (1) reduces to a functional linear model between the scalar
response Y(t) and the functional predictor X(s), t − � ≤ s ≤ t.

3.1 Estimation of the History Index Function

Writing the model as

E
{
YC(t)|XC(s), s ∈ [t − �, t]} = β1(t)

∫ �

0
γ (s)XC(t − s)ds

=
∫ �

0
αt(s)X

C(t − s)ds, (8)

with regression parameter functions αt(s) = β1(t)γ (s), the
functions αt(s) contain the factor γ (s) for each t. Owing to∫ �

0 γ 2(s)ds = 1, for each fixed time point t

γ (s) = αt(s)

{∫ �

0 α2
t (s)ds}1/2

. (9)

Even though the estimator of αt(s), obtained at a single time
point t, suffices to obtain the history index function γ (s) via
(9), improved finite sample behavior and stability of resulting
estimators can be obtained by averaging the representation (9)
over an equidistant grid of time points (t1, . . . , tR) in [�,T],
pertaining to

γ (s) =
∑R

r=1 αtr (s)

[∫ �

0 {∑R
r=1 αtr (s)}2 ds]1/2

. (10)

Here number of time points, R, typically would be small. Note
that once the history index function γ is recovered, model (1)
reduces to a varying coefficient model where a variant of the
proposed estimation procedure in Section 2 can be applied.

To obtain a representation of the functions αt in the func-
tional linear regression model (8), consider processes Zt(s) =
XC(t−s), s ∈ [0,�], with auto-covariance function Gt(s1, s2) =
GXX(t − s1, t − s2) for s1, s2 ∈ [0,�] and orthonormal ex-
pansion into eigenfunctions φtm and eigenvalues ρtm given
by Gt(s1, s2) = ∑

m ρtmφtm(s1)φtm(s2). Expanding αt(s) =

∑
m αtmφtm(s), s ∈ [0,�], with suitable expansion coefficients

αtm,m ≥ 1, and observing the representation Zt(s) = ∑
m ξtm ×

φtm(s), s ∈ [0,�], with random coefficients ξtm = ∫ �

0 Zt(s) ×
φtm(s), one finds that minimizing the expected squared devi-
ation E{YC(t) − ∫ �

0 αt(s)XC(t − s)ds}2 corresponds to finding
the values for αtm,m = 1,2, . . . , satisfying (d/dαtm)[E{YC(t)−∑

m αtmξtm}2] = 0,m = 1,2, . . . . A straightforward calculation
shows that the solutions are

α′
t(s) =

∑
m

α′
tmφtm(s),

(11)

α′
tm = 1

ρtm

∫ �

0
GXY(t − s, t)φtm(s)ds.

Given a fixed time t, reversing the time order of the data
for all subjects that are observed in the window [t − �, t],
and then performing a functional principal component analysis,
yields estimates φ̂tm, ρ̂tm of the eigenfunctions and eigenvalues
φtm, ρtm of processes Zt. Estimates Ĝt of covariance surfaces
Gt are obtained as described in Appendix A.3. Utilizing the
estimates ĜXY , as used before in (4), and applying numerical
integration, we obtain the estimates

α̂tm = 1

ρ̂tm

∫ �

0
ĜXY(t − s, t)φ̂tm(s)ds,

(12)

α̂t(s) =
Mt∑

m=1

α̂tmφ̂tm(s).

One then proceeds to obtain estimates (12) for the equidis-
tant grid of time points (t1, . . . , tR), leading to a series of esti-
mates {α̂t1(s), . . . , α̂tR(s)}, each of which targets a multiple of
γ (s), namely {β1(t1)γ (s), . . . , β1(tR)γ (s)}. We apply (10) to
combine these estimates, making use of the identifiability con-
ditions

∫ �

0 γ 2(u)du = 1 and γ (0) > 0, obtaining the estimated
history index function

γ̂ (s) =
∑R

r=1 α̂tr (s)√∫ �

0 {∑R
r=1 α̂tr (u)}2 du

(−1)I , (13)

where the integral is obtained numerically. Here I is the indi-
cator function for the event{

R∑
r=1

α̂tr (0)

}/√√√√∫ �

0

{
R∑

r=1

α̂tr (u)

}2

du < 0,

or equivalently,
∑R

r=1 α̂tr (0) < 0.

3.2 Estimating the Varying Coefficient Function

Once γ̂ (s) has been obtained, the remaining unknown com-
ponent in model (1) is the varying coefficient function β1.
Defining X̃(t) = ∫ �

0 γ (s)XC(t − s)ds, model (8) can be inter-
preted as a varying coefficient model with predictor process X̃.
In principle, this leads to a straightforward procedure to obtain
β1 by replacing X(t) with X̃(t) and applying the methods de-
veloped in Section 2. However, because of the sparsity of the
available data, the numerical integration involved in estimating
X̃(t) will often not yield good approximations in sparse longi-
tudinal settings.
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This motivates a simpler approach for the sparse case that
avoids the estimation of X̃(t) separately for each subject. From
(8), we find by conditioning

cov{X(t),Y(t)}
= cov

[
E{XC(t)|X},E{YC(t)|X}] + E

[
cov{XC(t),YC(t)|X}]

= β1(t)
∫ �

0
γ (s) cov{X(t − s),X(t)}ds,

cov{X(t), X̃(t)} =
∫ �

0
γ (s) cov{X(t − s),X(t)}ds,

and therefore β1(t) = GXY(t, t)/
∫ �

0 γ (s)GXX(t − s, t)ds. This
leads to estimates

β̂1(t) = ĜXY(t, t)
/∫ �

0
γ̂ (s)ĜXX(t − s, t)ds,

(14)

β̂0(t) = μ̂Y(t) − β̂1(t)
∫ �

0
γ̂ (s)μ̂X(s)ds,

using the estimates for GXY ,GXX,μX,μY that are described in
Section 2.

3.3 Asymptotic Consistency

The following result provides uniform convergence for the
history index function γ and the varying coefficient functions
β0 and β1 in the history index model (8).

Theorem 4. Under Assumptions (A) and (B) in the Appen-
dix, the functional varying coefficient function estimators (13),
(14) satisfy

lim
n→∞ sup

s∈[0,�]
|γ̂ (s) − γ (s)| = 0,

lim
n→∞ sup

t∈[�,T]
|β̂r(t) − βr(t)| = 0,

in probability for r = 0,1.

The rates of convergence depend on specific properties of
processes X and Y , on how the Mt increase with sample size,
and on the bandwidth sequences that are used in the various
smoothing steps. We mention here in passing that similar re-
sults also hold, under suitable regularity conditions, when � is
replaced by a consistent estimate �̂ with �̂ → �. One can see
this from the definition of the functions αt as minimizers of a
least squares problem; see (8)–(11). For two choices �,�′, for

the nonoverlapping part of the domains,
∫ max(�,�′)

min(�,�′) αt(s)XC(t−
s)ds = OP(|� − �′|), which implies the same bound for the
overlapping part of the domains, due to the minimum property,
and these bounds are uniform in t, from which we may conclude

results such as supt |
∫ �̂

0 γ̂ (s)X(t− s)ds−∫ �

0 γ (s)X(t− s)ds| =
OP(|� − �̂|).
3.4 Prediction and Asymptotic Pointwise Confidence

Bands for Response Trajectories

Prediction of the response trajectory Y∗ for a new subject
based on the functional linear model in (8) is obtained from the

conditional expectation

E
{
Y∗(t)|X∗(s), s ∈ [t − �, t]}

= μY(t) + β1(t)
∫ �

0
γ (s)X∗C(t − s)ds,

with

γ (s) =
∑R

r=1
∑∞

m′=1 α′
rm′φrm′(s)

[∫ �

0 {∑R
r=1 αtr (s)}2 ds]1/2

and

X∗C(t − s) =
∞∑

m=1

ξ∗
tmφtm(s),

by (10) and (11). Here we denote dependence on tr by only one
subscript r for simplicity, that is, for example α′

rm′ ≡ α′
trm′ and

φrm′(s) ≡ φtrm′(s). Then

E
{
Y∗(t)|X∗(s), s ∈ [t − �, t]}
= μY(t)

+ β1(t)
∑∞

m=1 ξ∗
tm

∑R
r=1

∑∞
m′=1 α′

rm′
∫ �

0 φtm(s)φrm′(s)

[∫ �

0 {∑R
r=1 αtr (s)}2 ds]1/2

.

(15)

As in Section 2.4, we assume that the local functional prin-
cipal components ξ∗

tm and the measurement errors are jointly
Gaussian. With Z∗

tj = Z∗
t (Ttj) denoting the jth measurement

for the predictor function Z∗
t (s) = X∗C(t − s), s ∈ [0,�], at

time Ttj, for a random number of measurements N∗
t , that is,

j = 1, . . . ,N∗
t , and with Z̃∗

tj denoting the noise contaminated

version of Z∗
tj and Z̃∗

t = (̃Z∗
t1, . . . , Z̃∗

tN∗
t
), one finds that the best

prediction of the scores ξ∗
tm, conditional on Z̃∗

t , N∗
t and T∗

t =
(T∗

t1, . . . ,TtN∗
t
)T, is given by

ξ̃∗
tm = ρtmφ∗T

tm �−1
tZ̃∗Z̃∗

t , (16)

φ∗
tm = {φtm(T∗

t1), . . . , φtm(T∗
tN∗

t
)}T and �tZ̃∗ = cov(Z̃∗

t |N∗
t ,T∗

t ).
The quantities in (16) can be estimated from the entire data,
analogously to the description in Section 2.4, leading to ξ̂∗

tm =
ρ̂tmφ̂∗T

tm �̂
−1
tZ̃∗Z̃∗

t , and the predicted trajectories

Ŷ∗
M,Mt

(t)

= μ̂Y(t)

+ β̂1(t)
∑Mt

m=1 ξ̂∗
tm

∑R
r=1

∑Mr
m′=1 α̂′

rm′
∫ �

0 φ̂tm(s)φ̂rm′(s)

[∫ �

0 {∑R
r=1 α̂tr (s)}2 ds]1/2

,

(17)

where M = ∑R
r=1 Mr . The following result establishes con-

vergence of estimated response trajectories to the target func-
tion Ỹ∗(t) = μY(t) + {β1(t)

∑∞
m=1 ξ̃∗

tm
∑R

r=1
∑∞

m′=1 α′
rm′ ×∫ �

0 φtm(s)φrm′(s)}/[∫ �

0 {∑R
r=1 αtr (s)}2 ds]1/2.

Theorem 5. Under Assumptions (A), (B), (C2), (C3b) in
the Appendix, given N∗

t and T∗
t , for all t ∈ [�,T], esti-

mated response trajectories in the functional varying coefficient
model (8) satisfy

lim
n→∞ Ŷ∗

M,Mt
(t) = Ỹ∗(t), in probability.
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Şentürk and Müller: Functional Varying Coefficient Models 1261

For constructing pointwise asymptotic confidence intervals
for the mean response, let ξ̂

Mt∗,t = (ξ∗
t1, . . . , ξ

∗
tMt

)T and de-

fine ξ̃
Mt∗,t analogously. Further let the Mt × N∗

t matrix Ht =
cov(ξ

Mt∗,t, Z̃∗
t |N∗

t ,T∗
t ) = (ρt1φ

∗
t1, . . . , ρtMtφ

∗
tMt

)T. Since ξ̃
Mt∗,t =

Ht�
−1
tZ̃∗Z̃∗

t , cov(ξ̃
Mt∗,t|N∗

t ,T∗
t ) = cov(ξ̃

Mt∗,t, ξ
Mt∗,t|N∗

t ,T∗
t ) = Ht ×

�−1
tZ̃∗HT

t . Hence with similar arguments as in Section 2.4,

given N∗
t and T∗

t , ξ̃
Mt∗,t − ξ

Mt∗,t ∼ N(0,�tMt), where �tMt =
Dt − Ht�

−1
tZ̃∗HT

t with D = diag(ρt1, . . . , ρtMt).

We next establish the asymptotic distribution of [̂Y∗
M,Mt

(t)−
E{Y∗(t)|X∗(s), s ∈ [t − �, t]}]. Let �̂tMt = D̂t − Ĥt�̂

−1
tZ̃∗ĤT

t ,

where D̂t = diag(ρ̂t1, . . . , ρ̂tMt) and Ĥt = (ρ̂t1φ̂
∗
t1, . . . ,

ρ̂tMt φ̂
∗
tMt

)T. Define φtM = β1(t){∑R
r=1

∑Mr
m′=1 α′

rm′ ×∫ �

0 φt1(s)φrm′(s), . . . ,
∑R

r=1
∑Mr

m′=1 α′
rm′

∫ �

0 φtMt (s)φrm′(s)}T/

[∫ �

0 {∑R
r=1 αtr (s)}2 ds]1/2 and let φ̂tM be its estimate ob-

tained from the data. The following result provides the as-
ymptotic distribution for estimated predicted trajectories, where

Ŷ∗
M,Mt

(t) = μ̂Y(t) + φ̂
T
tMξ̂

Mt∗,t .

Theorem 6. Under Assumptions (A), (B), (C2), (C3b),
(C4b), (C5) in the Appendix, given N∗

t and T∗
t , for all t ∈

[�,T], x ∈ R, the estimated predicted response trajectories
Ŷ∗

M,Mt
(t) (17) in the varying coefficient model (8) satisfy

lim
n→∞ P

[ Ŷ∗
M,Mt

(t) − E{Y∗(t)|X∗(s), s ∈ [t − �, t]}
ω̂tM,Mt

≤ x

]
= �(x),

where ωtM,Mt = φT
tM�tMtφtM, ω̂tM,Mt = φ̂T

tM�̂tMt φ̂tM are
as defined above.

As a consequence, the (1 − α)100% asymptotic pointwise
confidence interval for E{Y∗(t)|X∗(s), s ∈ [t − �, t]} is given
by Ŷ∗

M,Mt
(t) ± �(1 − α/2)

√
ω̂tM,Mt .

4. NUMERICAL RESULTS

4.1 Choice of Lag � and Application to Primary Biliary
Liver Cirrhosis Data

The proposed functional varying coefficient index model
with history index was applied to longitudinal measurements
made on patients with primary biliary cirrhosis, regressing pro-
thrombin time on albumin levels. The data come from a sparse
longitudinal design, with the number of repeated measurements
per subject ranging between 1 and 8. Our analysis includes the
fitting and interpretation of the proposed model in the frame-
work of a longitudinal study and a comparison with the func-
tional linear model, applied to the same data. Details can be
found in the online Supplemental Material.

For the data-adaptive selection of the lag parameter � in
model (1), we choose the minimizer of the absolute prediction
error

�̂ = argmin
�

n∑
i=1

Ni∑
j=1

∣∣Yi(Tij) − Ŷ∗
iM,MTij ,�

(Tij)
∣∣, (18)

where Ŷ∗
iM,MTij ,�

is the predicted trajectory for the ith subject,

employing lag � and the estimated scores in (17).

4.2 Simulation Results

We report here the results of two simulation studies. The goal
of the first study was to assess the performance of the func-
tional approach (4) for the standard varying coefficient model
(without history component), as described in Section 2. This ap-
proach is especially aimed at fitting varying coefficient models
for situations with sparse and noisy data. We compare its per-
formance in such settings with standard kernel linear smooth-
ing. A second simulation study was designed to assess the per-
formance of the proposed estimators (13), (14) for functional
varying coefficient models with history component. Both simu-
lations employed 500 Monte Carlo runs.

The scenario for the first simulation reflects very sparse de-
signs. The number of measurements per subject was randomly
chosen with equal probability from {3,4,5} for each of n = 100
subjects. The locations Tij of the measurements for the ith sub-
ject were assumed to be uniformly distributed on [0,T], with
T = 10. The simulated predictor process X was generated with
mean function μX(t) = t + sin(t), and covariance function con-
structed from two eigenfunctions, φ1(t) = cos(π t/10)/

√
5 and

φ2(t) = sin(π t/10)/
√

5, for 0 ≤ t ≤ 10 and two eigenvalues,
ρ1 = 2 and ρ2 = 1, respectively. The functional principal com-
ponents ξim (m = 1,2) were generated from N (0, ρm). Follow-
ing (2), the response trajectories were generated from Yi(t) =
β0(t) + β1(t)Xi(t) + Wi(t), where β0(t) = t, β1(t) = sin(π t/10)

and the mean zero process Wi(t) corresponds to the part of Yi(t)
that is not explained by the predictor Xi(t). Specifically, the Wi

were constructed from the same two eigenfunctions as used for
X(t), with Gaussian functional principal components generated
with eigenvalues ρ = 0.1 for both eigenfunctions. The measure-
ments of both predictor and response trajectories were assumed
to be contaminated with measurement errors, accordingly the
measurements are Uij = Xi(Tij) + εij,Vij = Yi(Tij) + εij, where
εij, εij are iid zero mean Gaussian errors, both with variances
0.1. Bandwidths for the smoothing of mean functions and
auto and cross-covariance surfaces were chosen by generalized
cross-validation.

We compared the proposed functional approach with kernel
linear smoothing, described in Appendix A.3, with evaluation
criteria mean absolute deviation error (MADE) and weighted
average squared error (WASE), defined as, respectively,

MADE = 1

2T

1∑
r=0

∫ |βr(t) − β̂r(t)|dt

{range(βr)} ,

WASE = 1

2T

1∑
r=0

∫ {βr(t) − β̂r(t)}2 dt

{range2(βr)} ,

where range(βr) is the range of the function βr(t) and T = 10.
We also considered unweighted average squared error (UASE),
defined in the same way as WASE, but without weights in the
denominator. Boxplots of the ratios of the values of MADE,
WASE, and UASE of the proposed method over the kernel lin-
ear smoothing approach are given in Figure 1(a). Figure 1(d)
contains the boxplots from another simulation scenario with
the same setup, except for irregular but dense (nonsparse) mea-
surement times, with total number of repeated measurements
generated uniformly from {20, . . . ,30}. The boxplots indicate
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Figure 1. (a), (d) Boxplots for the ratios of error measures for proposed estimates for varying coefficient models over kernel linear smooth-
ing, for MADE, WASE, and UASE (shown from left to right) for (a) sparse longitudinal data, and (d) irregular nonsparse longitudinal data.
Quotients smaller than correspond to cases where the proposed functional approach is superior. The box plots are based on ratios obtained
from 500 Monte Carlo runs. (b), (c), (e), (f) The cross-sectional mean curves of the proposed estimates (dotted) and of kernel linear smoothing
(dash-dotted) overlaying the true varying coefficient functions (solid) for sparse error-prone measurements (b), (c), and irregular nonsparse error
prone measurements (e), (f).

that the proposed estimators lead to much improved finite sam-
ple performance in both sparse and dense cases, likely due to
the fact that the proposed method adjusts for noise contami-
nated measurements and takes advantage of information inher-
ent in the underlying correlation structure of the longitudinal
processes. The cross-sectional mean varying coefficient func-
tion estimates obtained by averaging over the Monte Carlo runs
are provided in Figures 1(b), (c) and (e), (f) for both simulation
scenarios, respectively.

In a second simulation scenario we studied the finite sam-
ple performance of the proposed estimators for functional vary-
ing coefficient models with history index. Fifty trajectories
were generated, along with a random number of measure-
ments for each trajectory, chosen with equal probability from
{1, . . . ,8}, with uniformly distributed locations on the domain
[0,10]. The time lag in model (1) was � = 5, correspond-
ing to half the length of the domain of the measurement lo-
cations. Predictor processes X were simulated with the same
mean function as in the first simulation and covariance func-
tion constructed from eigenfunctions φ1(t) = sin(π t/5)/

√
5

and φ2(t) = cos(π t/5)/
√

5, for 0 ≤ t ≤ 10, with eigenval-
ues ρ1 = 10 and ρ2 = 5, respectively. The functional princi-
pal components ξim (m = 1,2) were generated from N (0, ρm),
and the response trajectories according to Yi(t) = β0(t) +
β1(t)

∫ �

0 γ (u)Xi(t − u)du + Wi(t), with β0(t) = t2/2, β1(t) =
5 sin(π t/10), and γ (u) = √

2/5 cos(πu/5), satisfying the iden-
tifiability conditions

∫
γ 2(u)du = 1 and γ (0) > 0. As in the

first simulation, Wi(t) was generated as a zero mean Gaussian
process with the same eigenfunctions as X and eigenvalues 0.5
and 0.3, respectively, and both observed predictor and response
trajectories were assumed to be contaminated with Gaussian
measurement errors with variances 0.3; smoothing bandwidths
were chosen by generalized cross-validation.

In Figure 2, the cross-sectional medians of the estimated
functional varying coefficient functions are presented along
with the 5% and 95% cross-sectional percentiles, overlaid with
the true coefficient functions. The displayed functions from the
functional varying coefficient model fit are obtained by fixing
� at the true value 5. Also displayed are the varying coeffi-
cient functions obtained by fitting the varying coefficient model
given in Equation (2), with kernel linear smoothing as outlined
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Şentürk and Müller: Functional Varying Coefficient Models 1263

Figure 2. (a) The cross-sectional median curves of the proposed estimates (dashed) along with 5% and 95% cross-sectional percentiles
(dotted) overlaying the true varying coefficient function β0 (solid) from the second simulation scenario described in Section 4.2 for a functional
varying coefficient model with lag � = 5. Also displayed are the cross-sectional median curves for standard varying coefficient model fits, using
kernel linear smoothing (dash-dotted). (b) The cross-sectional median curves for the varying coefficient function β1. (c) The cross-sectional
median curves for the history function γ . (d) Boxplots for the ratios of error measures for proposed estimates with a fixed � in comparison
to the standard kernel linear smoothing approach (for MADE—1, WASE—3, UASE—5), and for proposed estimates with estimated � (for
MADE—2, WASE—4, UASE—6).

in Appendix A.3 (see online Supplemental Material). Boxplots
of the ratios of the values of MADE, WASE, and UASE of the
proposed method over the corresponding values for kernel lin-
ear smoothing for estimating the varying coefficient functions
β0 and β1 are given in Figure 2(d). These ratios are presented
under two scenarios, where in the first scenario � is fixed at 5
and hence is not estimated, and in the second scenario � is se-
lected data-adaptively, according to the proposed lag selection
criterion (18). This second scenario is found to lead to slightly
improved performance of the estimators in terms of the error
ratios. Overall, the standard varying coefficient model is clearly
unsuited to target the varying coefficient functions, due to the
presence of a history index, while the proposed method is seen
to work well even for very sparse data.

We separately evaluated the performance of the absolute pre-
diction error criterion (18) for choosing the lag �, by adopt-
ing the second simulation scenario and a true lag parameter
� = 5. The percentages of the chosen values for � were found
to be (2,2,26,32,38) and (0,2,70,10,18), among the choices
� = (3,4,5,6,7), for simulations with sample sizes n = 50
and n = 200, respectively. So the criterion leads to the cor-
rect choice of � more frequently, as sample size increases. In

a second simulation for the case where the true lag parameter
is � = 0, corresponding to the special case of a regular varying
coefficient model, we found the percentages of chosen lag val-
ues to be (89,7,4) and (100,0,0), among the choices {0,1,2},
for sample sizes 50 and 200, respectively. We conclude that
this criterion satisfactorily distinguishes between varying coef-
ficient models that require a history index and those that do not.

While the proposed estimation procedures in both simula-
tion scenarios yield significant gains for the modeling of sparse
error-prone longitudinal data, the local linear smoothing ap-
proach is computationally simpler. The computational effort for
the proposed method is comparable to that for fitting a func-
tional linear model. For sample sizes n = 200 and n = 50, com-
puting times for fitting the respective models are (0.4,150,179)

and (0.1,43,52) seconds for (local linear smoothing, proposed
estimation algorithm and fitting a functional linear model), re-
spectively. Here, an equidistant grid of R = 15 time points is
used in obtaining the proposed history function estimator in
comparisons. Using fewer grid points down to just one point
preserves the consistency properties and accelerates computa-
tion.
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5. CONCLUDING REMARKS

The functional data analysis perspective suggests two useful
extensions of varying coefficient modeling. The first extension
provides an alternative and improved way of fitting standard
varying coefficient models, especially for the sparse and noise-
contaminated data case that is commonly encountered in lon-
gitudinal studies. The second extension generalizes the varying
coefficient model by introducing a history index, defined by a
smooth history index function, summarizing the effect of the
predictor function on the response function in a window prior
to current time.

The proposed functional varying coefficient model incorpo-
rates predictor effects on the response in a parsimonious and
easily interpretable fashion through the history index function
and the proposed representation of varying coefficient functions
through suitable auto and cross-covariances (1) enables the user
to directly incorporate information residing in the underlying
covariance structure; (2) allows for estimation in sparse de-
signs; (3) easily handles additional measurement errors in both
predictors and responses. These three features lead to improved
finite sample performance for sparsely and densely sampled,
error-prone longitudinal data.

Note that the theoretical results of Section 3, notably The-
orem 4, are obtained under the assumption of a fixed lag �.
Future extensions could include further study of lag estimators
�̂ and of models with time-varying lags �(t).

SUPPLEMENTAL MATERIALS

Application and Appendix: Supplement I: Application to
Longitudinal Primary Biliary Liver Cirrhosis Data. This is
a description of the data application of the proposed vary-
ing coefficient model with history index, as briefly described
in Section 4.1, including figures. Supplement II: Technical
Appendix. This appendix provides the assumptions for the
asymptotic results, the proofs of the theorems and details
about the estimation procedures, describing the smoothing
steps and the functional AIC. (supplement.pdf)

[Received April 2009. Revised May 2010.]
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